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The standard approach in a biological two-player game is to assume both players choose their actions independently of one
another, having no information about their opponent’s action (simultaneous game). However, this approach is not realistic in
some circumstances. In many cases, one player chooses his action first and then the second player chooses her action with infor-
mation about his action (Stackelberg game). We compare these two games, which can be mathematically analyzed into two types,
depending on the direction of the best response function (BRF) at the evolutionarily stable strategy in the simultaneous game
(ESSsim). We subcategorize each type of game into two cases, depending on the change in payoff to one player, when both players
are at the ESSsim, and the other player increases his action. Our results show that in cases where the BRF is decreasing at the ESSsim,
the first player in the Stackelberg game receives the highest payoff, followed by both players in the simultaneous game, followed by
the second player in the Stackelberg game. In these cases, it is best to be the first Stackelberg player. In cases where the BRF is
increasing at the ESSsim, both Stackelberg players receive a higher payoff than players in a simultaneous game. In these cases, it is
better for both players to play a Stackelberg game rather than a simultaneous game. However, in some cases the first Stackelberg
player receives a higher payoff than the second Stackelberg player, and in some cases the opposite is true. Key words: evolutionarily
stable strategy, game, information, simultaneous solution, Stackelberg solution. [Behav Ecol 17:441–451 (2006)]

Evolutionary game theory has been used to model various
biological interactions (for reviews see Dugatkin and

Reeve, 1998; Maynard Smith, 1982). In general, the standard
model involves a situation where neither player has any in-
formation about their opponent’s action. We will refer to this
as a simultaneous game. An example of a simultaneous game
is the Houston and Davies (1985) parental effort model,
where each parent chooses an effort to contribute to raising
their young, with no information regarding the other parent’s
choice.

Another option is a Stackelberg game, named after its cre-
ator, Heinrich von Stackelberg (a German economist), who
originally modeled a game with this structure in 1934. The
game involves one player choosing first and the second player
responding with full knowledge of the first player’s action. In
some biological situations, this may be more realistic than
modeling the interaction as a simultaneous game. For exam-
ple, consider the case of two females that produce offspring
in the same location. In the absence of any previous interac-
tions between them, the details of the biology will determine
whether an approach based on a simultaneous game is realis-
tic. If one female can assess how many eggs or young the other
has produced, a Stackelberg game would be a more appropri-
ate model than the simultaneous game. In both cases, there
are still only two decisions made, the difference is whether the
second player has information about what the first player has
done.

McNamara et al. (2003) compare four types of parental
effort game, including a Stackelberg game. The evolutionarily
stable (ES) level of effort contributed to raising the young for
the first parent in the Stackelberg game was less than the ES
effort in the simultaneous game. The second parent’s ES level

of effort in the Stackelberg game was more than in the simul-
taneous game. Consequently, in this case, the first player in
a Stackelberg game receives a higher payoff than the second
player in the same game and either player in the simultaneous
game. (Note that, in a simultaneous game both parents con-
tribute an identical effort.)

This result poses some interesting questions. Is it better to
play a game with information (Stackelberg) or without (simul-
taneous)? If it is better to play a Stackelberg game, is it better
to be the first or second player? Understanding which player is
at an advantage in a game can give an insight into how selec-
tion acts on the decision process.

Sjerps and Haccou (1993) model the optimal clutch size of
two female insects ovipositing on the same host. They con-
sider three cases: in the first, no detection of another clutch
is possible (simultaneous game); in the second, detection of
another clutch is possible but not its size (also a simultaneous
game); and in the third case, detection of another clutch and
its size is possible (Stackelberg game). Their results show that
in some cases the second female in the Stackelberg game does
better to play the simultaneous game, and in other cases, the
second female in the Stackelberg game does better to play
the Stackelberg game. They note that whether the first
Stackelberg female decreased or increased her clutch size,
in comparison to her clutch size in a simultaneous game,
was dependent on the shape of the fitness curve. They also
point out that the first female will always get a better payoff in
a Stackelberg game than in a simultaneous game; however,
whether the second female gets a better payoff than in the
simultaneous game will again depend on the shape of the
fitness curve.

This paper aims to give a thorough analysis of modeling
two-player evolutionary games using a Stackelberg model in
comparison to a simultaneous model. In our analysis, we have
assumed that there is no role asymmetry between the players
in the simultaneous game, and both players have the same
payoff function. The payoff function itself may be symmetric,
W(x, y) ¼ W(y, x), where W(x, y) is the payoff to a player
who plays x, given that his opponent plays y; or asymmetric,
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W(x, y) 6¼ W(y, x). For example, consider a game between two
animals in which the payoff to an animal playing action x
when its opponent plays y is

W ðx; yÞ ¼ Bðx 1 yÞ � K ðxÞ;

and the payoff to its opponent is

W ðy; xÞ ¼ Bðx 1 yÞ � K ðyÞ;

where B(x 1 y) is a joint benefit function derived from the
actions of both players and K(�) is the cost of the action to the
focal player. In this example, there are no roles, and both
players have an identical payoff function, which is asymmetric
because W(x, y) 6¼ W(y, x).

The two-player games we analyze below are of two types:
those with an increasing best response function (BRF) and
those with a decreasing BRF, at the evolutionarily stable strat-
egy (ESS) in the simultaneous game. A BRF, b(x), is the best
action of an individual whose opponent played action x. We
subcategorize each type of game into two further cases, which
depends on the way the actions are labeled. This results in
four different cases. We give an analysis of the actions and
resulting payoffs obtained by each player in the Stackelberg
game, in comparison to a simultaneous game, and then pres-
ent a number of biological examples for each case.

ANALYSIS OF SIMULTANEOUS AND
STACKELBERG GAMES

Let W(y, x) be the payoff to a player playing action y whose
opponent is playing action x, where x and y are continuous
variables which may be interpreted differently in different
games (see Table 1 for a summary of definitions). The BRF
specifies the action of one player that maximizes their payoff,
given a fixed action by their opponent. This can be found by
differentiating the payoff function with respect to the first
argument (we will use the notation u1 to represent this) and
setting the result equal to zero,

@W

@u1
ðbðxÞ; xÞ ¼ 0: ð1Þ

This gives us an equation for the BRF, b(x), provided the
following equation also holds (Eshel, 1983)

@2W

@u2
1

ðbðxÞ; xÞ, 0: ð2Þ

Simultaneous game

When one player plays the ESS, their opponent can do no
better than also play the ESS. Therefore, the ESS is a best
response to itself, so

bðx*Þ ¼ x*;

and the payoff to both players when using the simultaneous
ESS is W ðx*; x*Þ:

We will also assume that the condition below for conver-
gence stability (Eshel, 1983) also holds to ensure that once
at the ES solution, small perturbations in the strategy cannot
cause a movement of the whole population away from the ESS,

@2W

@u2
1

ðx*; x*Þ1 @2W

@u1@u2
ðx*; x*Þ, 0:

Therefore, all simultaneous ESS’s, x*; in the following analysis
are continuously stable.

Stackelberg game: first player

Let player 1 choose first and player 2 choose second, without
loss of generality. Player 1 knows the BRF of player 2. There-
fore, the payoff, f(x), to player 1, playing x, in the Stackelberg
game can be defined as

f ðxÞ ¼ W ðx; bðxÞÞ:

This function is maximized at xs (the first player’s Stackelberg
ES action), where f #(xs) ¼ 0. If we evaluate f(x) at x* (the ESS
in the simultaneous game), we find that

f ðx*Þ ¼ W ðx*; bðx*ÞÞ ¼ W ðx*; x*Þ: ð3Þ

However, xs maximizes f(x), hence

f ðxsÞ � f ðx*Þ: ð4Þ

Thus, the payoff to player 1 in a Stackelberg game is always
greater than, or equal to, the payoff to both players in the
simultaneous game.

Assume that f(x) is a unimodal function (i.e., only one
maximum). It follows from Equation 4 that:

f #ðx*Þ. 00xs . x*; ð5Þ

f #ðx*Þ, 00xs , x*; ð6Þ

f #ðx*Þ ¼ 00xs ¼ x*: ð7Þ

See Figures 1 and 2 for illustrations of xs . x* and xs , x*;
respectively.

Differentiating f(x) gives

f #ðxÞ ¼ @W

@u1
ðx; bðxÞÞ1 b#ðxÞ @W

@u2
ðx; bðxÞÞ;

where u1 and u2 represent differentiating with respect to the
first and second arguments, respectively. By evaluating this at
the simultaneous ESS, where x* ¼ bðx*Þ; and then using Equa-
tion 1, we obtain

f #ðx*Þ ¼ @W

@u1
ðx*; x*Þ1 b#ðx*Þ @W

@u2
ðx*; x*Þ

¼ b#ðx*Þ @W

@u2
ðx*; x*Þ: ð8Þ

Therefore, at the simultaneous ESS, whether the first Stackelberg
player’s payoff increases as his action increases depends on
whether the BRF is increasing and whether an increase in the
action of one player increases the payoff of the other.

Table 1

Table of terms

Notation Meaning

W(y, x) Payoff to a player who plays y, given that his opponent plays x
b(x) Best response for a player, given that his opponent plays x
x* ES action in the simultaneous game
xs ES action for first player in the Stackelberg game
ys ES action for second player in the Stackelberg game
xc Action at the cooperative solution
f ðx*Þ Payoff at the simultaneous ESS
f(xs) Payoff to the first player at the Stackelberg ESS
g(xs) Payoff to the second player at the Stackelberg ESS
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Stackelberg game: second player

Suppose player 1 has already chosen to play action x. Now,
player 2 plays the best response to x, so the payoff to player 2
in the Stackelberg game g(x) can be defined as

g ðxÞ ¼ W ðbðxÞ; xÞ:

Note that,

g ðx*Þ ¼ W ðx*; x*Þ ¼ f ðx*Þ: ð9Þ

Differentiating g(x) gives

g #ðxÞ ¼ b#ðxÞ @W

@u1
ðbðxÞ; xÞ1 @W

@u2
ðbðxÞ; xÞ:

By evaluating this at x* ¼ bðx*Þ; and then using Equation 1,
we obtain

g#ðx*Þ¼ b#ðx*Þ @W

@u1
ðx*; x*Þ1 @W

@u2
ðx*; x*Þ¼ @W

@u2
ðx*; x*Þ: ð10Þ

Therefore, at the simultaneous ESS, whether the second
Stackelberg player’s payoff increases as his action increases

depends on whether an increase in the action of one player
increases the payoff of the other.

Substituting Equation 10 into Equation 8, we can obtain a
formula connecting the direction of the payoff for player 1 in
the Stackelberg game, at the simultaneous ESS, with the direc-
tion of the payoff for player 2 in the Stackelberg game, at the
simultaneous ESS,

f #ðx*Þ ¼ b#ðx*Þg#ðx*Þ:

RESULTS

Evaluating f #ðx*Þ and g #ðx*Þ; using the Equations 8 and 10,
gives the following four cases:

For Case A, let us assume that b#ðx*Þ, 0 and @W
@u2

ðx*; x*Þ, 0:
(i) From Equation 8, we find that f #ðx*Þ. 0: Therefore,

from Equation 5, we know that the first Stackelberg
player’s action, xs . x*:

(ii) From Equation 10, we find that g #ðx*Þ, 0: Therefore,
g(x) is decreasing at x*; and because xs . x*; this
means g ðxsÞ, g ðx*Þ (see Figure 3).

(iii) From Equations 4 and 9 and (ii) above, we find that
g ðxsÞ, g ðx*Þ ¼ f ðx*Þ, f ðxsÞ:

(iv) We have assumed that b#ðx*Þ, 0: Therefore, b(x) is
decreasing at x* and, because xs . x*; this means the
second Stackelberg player’s action, ys ¼ bðxsÞ, bðx*Þ ¼
x* , xs :

We will call the case illustrated above Case A. The results
for Cases B–D can be explained similarly. See Table 2 for
a complete mathematical categorization of all the cases.

The cases have been classified on a mathematical basis.
However, examples of particular biological situations may fall
into more than one case, depending on the assumptions
made and therefore the payoff function used. For example,
Sjerps and Haccou (1993) present various payoff functions to
model two female insects ovipositing on the same host. In our
categorization, some of their examples fall into Case A and
some into Case C (depending on whether the BRF is decreas-
ing or increasing, respectively, at the simultaneous ESS).

Direction of best response

The BRF is just a property of the payoff function. Therefore,
we can express b#ðx*Þ in terms of the payoff function. To find
the best response equation, we maximize the payoff function,

Figure 1
Payoff to the first player in the Stackelberg game, playing xs, when
f(x) is an increasing function at x*:

Figure 2
Payoff to the first player in the Stackelberg game, playing xs, when
f(x) is an decreasing function at x*:

Figure 3
Payoff to the second player in the Stackelberg game, when g(x) is
a decreasing function at x*:
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as shown in Equation 1. Differentiating this equation gives the
direction of the BRF,

b#ðxÞ @
2W

@u2
1

ðbðxÞ; xÞ1 @2W

@u1@u2
ðbðxÞ; xÞ ¼ 0:

Evaluating this at the simultaneous ESS, x*; gives us an equa-
tion for b#ðx*Þ in terms of the payoff function,

b#ðx*Þ ¼
@2W

@u1@u2
ðx*; x*Þ

� @2W
@u2

1

ðx*; x*Þ
:

The denominator is positive from Equation 2. Therefore, the
direction of the BRF depends on the sign of

@2W

@u1@u2
ðx*; x*Þ; ð11Þ

which is how quickly the derivative @W
@u1

ðx*; x*Þ (the slope of
the payoff function, with respect to u1, at the simultaneous
ESS) is changing with u2 (see Table 2).

Cooperative solution

We will now illustrate how the cases above can be reformulated
in terms of the cooperative solution to a game. Assume that
both players play the same action. The payoff to each is then

hðxÞ ¼ W ðx; xÞ:

Let this function be maximized at xc. Then we refer to xc as the
cooperative action. Using a similar method to the analysis for
the ‘‘Stackelberg game: first player’’, we find that:

@W

@u2
ðx*; x*Þ. 05xc . x*;

@W

@u2
ðx*; x*Þ, 05xc , x*;

@W

@u2
ðx*; x*Þ ¼ 05xc ¼ x*:

Therefore, as seen from Table 2, we may either categorize the
cases in terms of whether the cooperative action is greater
than or less than the simultaneous ES action; or in terms of
the sign of @W

@u2
ðx*; x*Þ.

Labeling

From Table 2, we can see that the payoff function results are
identical in Cases A and B: g ðxsÞ, f ðx*Þ, f ðxsÞ. However, the
action results are different: for Case A, ys , x* , x; but for
Case B, xs , x* , ys : This is a consequence of how the actions
are labeled.

For example, consider a vigilance game played between
two birds. For a proportion of the time a bird forages for
food and for the remainder of the time a bird is vigilant
for attacks from predators. If we label ‘‘foraging’’ as the
action we are interested in, then we find that in a Stackelberg
game, the first bird to play will forage more ðxs . x*Þ and the
second bird will forage less ðys , x*Þ; than in the simulta-
neous game (Case A). If we label ‘‘vigilance’’ as the action
we are interested in, then we will find that in a Stackelberg
game, the first bird to play will be less vigilant ðxs , x*Þ and
the second bird will be more vigilant ðys . x*Þ; than in the
simultaneous game (Case B). However, it is clear that the
labeling will not affect the result that in the Stackelberg
game, the first bird will always receive a higher payoff and
the second bird will always receive a lower payoff, than
in the simultaneous game. Cases C and D can be similarly
compared.

Mathematically, it is very easy to switch the labels to move
between Case A and B or between Case C and D. However, in
a biological context, this is not always as easily understood as
in the vigilance game. Therefore, we have retained four cases
and have given examples for each.

In Table 2, we have also included the case where the payoff
function is symmetric, so

W ðx; yÞ ¼ W ðy; xÞ

@W

@u1
ðx; yÞ ¼ @W

@u2
ðy; xÞ;

with the result that

f #ðx*Þ ¼ g #ðx*Þ ¼ ð11 b#ðx*ÞÞ @W

@u1
ðx*; x*Þ ¼ 0: ð12Þ

Therefore, if the payoff function is symmetric, it makes no
difference whether a simultaneous or Stackelberg game is
played. The ESS and therefore the payoffs are identical for
both players, for both games.

Table 2

Summary of the properties of Cases A–D and the symmetric case

Properties of the
payoff function

@W
@u2

ðx*; x*Þ, 0

or

xc , x*

@W
@u2

ðx*; x*Þ ¼ 0

or

xc ¼ x*

@W
@u2

ðx*; x*Þ. 0

or

xc . x*

Case A Case B

@2W
@u1@u2

ðx*; x*Þ, 0

or

b#ðx*Þ, 0

g ðxsÞ, f ðx*Þ, f ðxsÞ
ys , x* , xs Symmetric case

g ðxsÞ ¼ f ðx*Þ ¼ f ðxsÞ
ys ¼ x* ¼ xs

g ðxsÞ, f ðx*Þ, f ðxsÞ
xs , x* , ys

@2W
@u1@u2

ðx*; x*Þ. 0

or

b#ðx*Þ. 0

Case C

f ðx*Þ, f ðxsÞ; g ðxsÞ
xs ; ys , x*

Case D

f ðx*Þ, f ðxsÞ; g ðxsÞ
x* , xs ; ys
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EXAMPLES OF CASES A–D

The following biological examples illustrate four cases. How-
ever, if the same biological interaction were modeled using
a different payoff function, it may not fit into the same case in
our mathematical classification.

Case A: b#ðx*Þ, 0; @W
@u2

ðx*; x*Þ, 0

Example A1: model by Cant of two females producing young in the
same location
In the Cant (1998) model, two (possibly related) females are
producing young in the same location. One example of ani-
mals which play this type of game would be acorn woodpeckers
laying eggs in tree cavities (Koenig et al., 1995; Mumme et al.,
1983). In the simultaneous game, the females can detect that
other offspring are present, but not how many. In the Stack-
elberg game, the second female can detect the number of
offspring the first female produced. Both females are assumed
to remain and care for their combined brood.

Let x and y be the brood sizes of the first and second
females, respectively. The general payoff function for the Cant
(1998) model is

W ðy; xÞ ¼ y

x 1 y
F ðx 1 yÞ � K ðyÞ1 r

x

x 1 y
F ðx 1 yÞ � F ðxÞ

� �
;

where F(x 1 y) is the fitness of the brood of size x 1 y, K(x) is
the cost of producing a brood of size x, and r is the relatedness
of one female to the other (Equation 4 of Cant, 1998). How-
ever, depending on the specific functions chosen for F(x) and
K(x), the general payoff function may not always be classified
into the same case in our analysis.

Cant (1998) presents a model using the specific fitness and
cost functions:

F ðxÞ ¼ xð1 � kxÞ; ð13Þ

K ðxÞ ¼ lx; ð14Þ

where k is a measure of the sensitivity of offspring fitness to
crowding, and l scales x and represents the cost of producing
a certain brood size. This results in the payoff function

W ðy; xÞ ¼ ð1 � l� kxð11 r ÞÞy � ky2:

The differential of the BRF at the simultaneous ESS is

b#ðx*Þ ¼ � ð11 r Þ
2

;

which is negative because r is positive. The change in payoff
to one female at the simultaneous ES brood size when the
other increases her brood size above the simultaneous ES
brood size is

@W

@u2
ðx*; x*Þ ¼ � ð1 � lÞð11 rÞ

ð31 rÞ ;

which is negative because r is positive and 0 , l , 1. There-
fore, this is an example of a Case A game.

Results. The ES brood sizes are

x* ¼ 1 � l
kð31 rÞ; xs ¼

ð1 � lÞð1 � rÞ
2kð1 � r ð21 r ÞÞ;

ys ¼
ð1 � lÞð1 � r ð41 rÞÞ

4kð1 � r ð21 rÞÞ ;

therefore, it can be shown that ys , x* , xs ; as expected. The
payoffs at the ES brood sizes are

f ðx*Þ ¼ ð1 � lÞ2

kð31 rÞ2;

f ðxsÞ ¼
ð1 � lÞ2ð1 � rÞ
2kð1 � rð21 r ÞÞ

3 1 � ð1 � rÞ
2ð1 � r ð21 rÞÞ �

ð11 rÞð1 � rð41 rÞÞ
4ð1 � r ð21 r ÞÞ

� �
;

g ðxsÞ ¼
ð1 � lÞ2ð1 � rð41 r ÞÞ

4kð1 � rð21 rÞÞ

3 1 � ð1 � r 2Þ
2ð1 � rð21 rÞÞ �

ð1 � rð41 r ÞÞ
4ð1 � r ð21 r ÞÞ

� �
;

therefore, it can be shown that g ðxsÞ, f ðx*Þ, f ðxsÞ; as expected
(see the Appendix for more detailed calculations of the ES
brood sizes and payoffs). Figure 4 gives a graphical illustration
of the simultaneous ESS and Stackelberg ESS brood sizes.

Example A2: model by Sjerps and Haccou of optimal clutch sizes of
competing insects
Sjerps and Haccou (1993) modeled the optimal clutch size of
two female insects ovipositing on the same host. Both females
know that there will be another female ovipositing on the
same host. The simultaneous game is when a female cannot
detect the size of the other female’s clutch. The Stackelberg
game is when a female can detect the size.

Let x and y be the clutch sizes of the first and second fe-
males, respectively. The general payoff function for the Sjerps
and Haccou (1993) model is

W ðy; xÞ ¼ yhðx 1 yÞ;

where h(x 1 y) is the fitness gain per egg from a clutch of x 1 y
eggs (Equation on page 475 of Sjerps and Haccou, 1993).

Figure 4
Level payoff curves for player 1, in Case A, with payoff function
W(x, y) ¼ (1 � l � ky(1 1 r))x � kx2, where l ¼ 0.2, k ¼ 0.4, and
r ¼ 0.1. Increasing payoff is in a downwards direction. The graph
shows the simultaneous ESS, x*; and Stackelberg ESS’s, xs and ys, for
the first and second players, respectively. The simultaneous ESS is at
the point where the best response line crosses the maximum of
a level payoff curve. The Stackelberg ESS’s are at the point where the
best response line forms a tangent with a level payoff curve.
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Depending on the shape of the fitness function, h(x 1 y), the
model may fall into Case A or Case C. For both Case A and Case
C, an increase in the clutch size by one female results in a de-
crease in the payoff to the other female. However, in Case A,
the best response to an increase in clutch size is to lay less eggs,
whereas in Case C, the best response is to lay more eggs.

Sjerps and Haccou present a specific example (Equation
(i), top of page 478 of Sjerps and Haccou, 1993) with payoff
function

W ðy; xÞ ¼ y 2 � 2
x 1 y
30

� �
:

The differential of the BRF at the simultaneous ESS is

b#ðx*Þ ¼ �0:6:

The change in payoff to one female at the simultaneous ES
clutch size when the other increases her clutch size above the
simultaneous ES clutch size is

@W

@u2
ðx*; x*Þ ¼ �0:4:

Therefore, this is another example of a Case A game (see
Example C1 below for an example of a Case C game using
the same general model).

Results. Calculating x* and taking xs and ys from Sjerps and
Haccou (1993), the ES clutch sizes are

x* ¼ 10:4; xs ¼ 15:9; ys ¼ 7:3;

therefore, ys , x* , xs as expected. The payoffs at the ES
clutch sizes are

f ðx*Þ ¼ 4:0; f ðxsÞ ¼ 4:6; g ðxsÞ ¼ 2:1;

therefore, g ðxsÞ, f ðx*Þ, f ðxsÞ as expected.

Case B: b#ðx*Þ, 0; @W
@u2

ðx*; x*Þ. 0

Example B1: model by McNamara et al. of parental effort raising
offspring
In the McNamara et al. (2003) model, two parents are contrib-
uting effort to raising their offspring. It is assumed that both
parents remain to care for the young. (See Clutton-Brock,
1991, for a review of the occurrence of biparental care.) In
the simultaneous game, both parents may be thought of as
contributing their efforts simultaneously. In the Stackelberg
game, the second parent can observe how much effort the first
parent has contributed, before contributing his effort.

Let x and y be the efforts contributed by the first and sec-
ond parent, respectively. The general payoff function for the
McNamara et al. model (Equation 1 of McNamara et al.,
2003) is

W ðy; xÞ ¼ Bðx 1 yÞ � K ðyÞ;

where B(x 1 y) is the benefit to the offspring of the combined
effort contributed (an increasing, decelerating function), and
K(y) is the cost to the individual contributing effort y (an
increasing, accelerating function).

McNamara et al. (2003) present a model using the specific
benefit and cost functions

Bðx 1 yÞ ¼ 2ðx 1 yÞ � ðx 1 yÞ2;

K ðyÞ ¼ ky2;

where k is a positive parameter which scales the cost of the
effort made by the parent. This results in the payoff function

W ðy; xÞ ¼ 2ðx 1 yÞ � ðx 1 yÞ2 � ky2:

The differential of the BRF at the simultaneous ESS is

b#ðx*Þ ¼ � 1

11 k
;

which is negative because k is positive. The change in payoff to
one parent at the simultaneous ES effort when the other in-
creases her effort above the simultaneous ES effort is

@W

@u2
ðx*; x*Þ ¼ 2 1 � 2

21 k

� �
;

which is positive because k is a positive parameter. Therefore,
this is an example of a Case B game.

Results. The ES efforts are

x* ¼ 1

21 k
; xs ¼

k

11 3k 1 k2
; ys ¼

11 k

11 3k 1 k2
;

therefore, it can be shown that xs , x* , ys ; as expected.
The payoffs at the ES efforts are:

f ðx*Þ ¼ 41 3k

ð21 kÞ2; f ðxsÞ ¼
11 3k

11 3k 1 k2
;

g ðxsÞ ¼
11 5k 1 8k2 1 3k3

ð11 3k 1 k2Þ2 ;

therefore, it can be shown that g ðxsÞ, f ðx*Þ, f ðxsÞ; as ex-
pected. Figure 5 gives a graphical illustration of the simulta-
neous ESS and Stackelberg ESS efforts.

Example B2: model by Houston and McNamara of a vigilance game
In the Houston and McNamara (1999) model, two animals
are foraging. Both animals choose the proportion of time
spent feeding as opposed to being vigilant for predators. This

Figure 5
Level payoff curves for player 1, in Case B, with payoff function
W(x, y) ¼ 2(x 1 y) � (x 1 y)2 � x2/2. Increasing payoff is in an
upwards direction. The graph shows the simultaneous ESS, x*;
and Stackelberg ESS’s, xs and ys, for the first and second players,
respectively. The simultaneous ESS is at the point where the best
response line crosses the minimum of a level payoff curve. The
Stackelberg ESS’s are at the point where the best response line
forms a tangent with a level payoff curve.
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type of behavior has been observed in various species of
mammals and birds (Elgar, 1989), although vigilance may be
less costly for some mammals (Fortin et al., 2004). In the
simultaneous game, neither animal has any information about
the vigilance the other animal. In the Stackelberg game, the
second animal can observe the vigilance of the first animal.

Let x and y be the proportion of time spent being vigilant by
the first and second animal, respectively. (Note that, 1 � x and
1 � y are the proportions of time spent feeding for the first
and second animal, respectively.) The payoff function for the
Houston and McNamara (1999) model is

W ðy; xÞ ¼ h3net intake rate � predation rate

¼ ahð1 � yÞ � a
2
ð1 � xÞ2ð1 � yÞ2;

where a(1 � y) is the animal’s net food intake rate (where a is
a constant), h is the marginal rate of substitution of predation
risk for energy gain, and a is the rate at which attacks occur
(Equation 7.2 of Houston and McNamara, 1999). The differ-
ential of the BRF at the simultaneous ESS is

b#ðx*Þ ¼ �2:

The change in payoff to one animal at the simultaneous ES
vigilance level when the other increases its vigilance level
above the simultaneous ES vigilance level is

@W

@u2
ðx*; x*Þ ¼ ah;

which is positive provided a . 0. Therefore, this is an example
of a Case B game.

Results. The ES vigilance levels are

x* ¼ 1 �
ffiffiffiffiffiffi
ah
a

3

r
; xs ¼ 1 � ah

a
; ys ¼ 1 � a

ah
;

therefore, it can be shown that xs , x* , ys ; as expected. The
payoffs at the ES vigilance levels are

f ðx*Þ ¼ 1

2

ffiffiffiffiffiffi
ah
a

3

r !4

; f ðxsÞ ¼
ðahÞ2

a
� a

2
; g ðxsÞ ¼

a
2
;

therefore, it can be shown that g ðxsÞ, f ðx*Þ, f ðxsÞ; as ex-
pected.

Case C: b#ðx*Þ. 0; @W
@u2

ðx*; x*Þ, 0

Example C1: model by Sjerps and Haccou of optimal clutch sizes of
competing insects
See Example A2 for description of the model used by Sjerps
and Haccou (1993). One example presented (Equation (ii),
bottom of page 478 of Sjerps and Haccou, 1993) has the
payoff function

W ðy; xÞ ¼ 158y

25 11 x 1 y
30

� �4:

The differential of the BRF at the simultaneous ESS is

b#ðx*Þ ¼ 1

3
:

The change in payoff to one female at the simultaneous ES
clutch size when the other increases her clutch size above the
simultaneous ES clutch size is

@W

@u2
ðx*; x*Þ ¼ � 79

200
:

Therefore, this is an example of a Case C game.
Results. The ES clutch sizes are

x* ¼ 15; xs ¼ 10; ys ¼ 13:3;

therefore, both xs and ys are less than x*; as expected. The
payoffs at the ES clutch sizes are

f ðx*Þ ¼ 5:9; f ðxsÞ ¼ 6:3; g ðxsÞ ¼ 8:4;

therefore, both f(xs) and g(xs) are greater than f ðx*Þ; as
expected. Note that in this case the second Stackelberg fe-
male does better than the first. However, this is not always
the case. Both results are possible, depending on the specific
payoff function involved. Figure 6 gives a graphical illustra-
tion of the simultaneous ESS and Stackelberg ESS clutch
sizes.

Case D: b#ðx*Þ. 0; @W
@u2

ðx*; x*Þ. 0

Example D1: model of predator inspection by two fish
Small fish inspect objects that might be predators. This is
known as predator inspection. The inspection may provide
information about whether the object represents danger
(Pitcher, 1992). Sometimes fish inspect in pairs (Dugatkin,
1997). It is assumed that the benefit of inspection increases
as the fish gets nearer to the predator, but the cost also in-
creases. The advantage of inspecting as a pair is that the cost is
reduced for both fish if there is another fish present.

In our model of predator inspection, the distance x and y of
the fish A and fish B, respectively, is measured from a baseline
point 0 toward the predator (at point 1). As x and y increase
toward 1, the fish get closer to the predator. The survival
probability, S(y, x), depends on the distance from the baseline
of the focal fish toward the predator and the position of the
other fish. Survival of both fish decreases as they get closer to
the predator, but if fish A is closer to the predator than fish B,
then the survival probability of fish B is increased. In this
model, the survival probability takes the form

Sðy; xÞ ¼ e�
cy

11 x ;

Figure 6
Level payoff curves for player 1, in Case C, with payoff function
W ðx; yÞ ¼ 158x=25 11x1y

30

� �4
: Increasing payoff is in a downwards

direction. The graph shows the simultaneous ESS, x*; and Stackelberg
ESS’s, xs and ys, for the first and second players, respectively. The
simultaneous ESS is at the point where the best response line crosses
the maximum of a level payoff curve. The Stackelberg ESS’s are at the
point where the best response line forms a tangent with a level payoff
curve.
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where c is a positive constant. The benefit function depends
only on the distance from the baseline of the focal fish and
can take the form of a simple linear function, such as

BðyÞ ¼ a1 by:

This represents a fish obtaining benefit a if it does not inspect
the predator, but getting an increased benefit of by if it gains
some information about this unknown source.

Therefore, we have the following payoff function

W ðy; xÞ ¼ BðyÞSðy; xÞ ¼ ða1 byÞe�
cy

11 x :

Setting a ¼ 1, b ¼ 4, and c ¼ 2, we have the following specific
function

W ðy; xÞ ¼ ð11 4yÞe�
2y

11 x :

The differential of the BRF at the simultaneous ESS is

b#ðx*Þ ¼ 1

2
:

The change in payoff to one fish at the simultaneous ES dis-
tance when the other fish increases its distance above the
simultaneous ES distance is

@W

@u2
ðx*; x*Þ ¼ 4

9
:

Therefore, this is an example of a Case D game.
Results. The ES distances from the baseline are

x* ¼ 0:5; xs ¼ 0:92; ys ¼ 0:71;

therefore, both xs and ys are greater than x*; as expected. The
payoffs at the ES distances from the baseline are

f ðx*Þ ¼ 1:540; f ðxsÞ ¼ 1:596; g ðxsÞ ¼ 1:833;

therefore, both f(xs) and g(xs) are greater than f ðx*Þ; as ex-
pected. Figure 7 gives a graphical illustration of the simulta-
neous ESS and Stackelberg ESS distances.

SYMMETRIC PAYOFF FUNCTIONS

Example S1: model of parental effort

In this parental effort game, the focal pair mates for life, and if
one individual dies, the other will not remate (this is true
monogamy as defined by Parker [1985]). This means the costs
incurred by one parent in one breeding attempt will affect
both parents in future breeding attempts. In effect, coopera-
tion is imposed upon the pair.

We use the following general payoff function

W ðx; yÞ ¼ Bðx 1 yÞ1 SðxÞSðyÞW ðx; yÞ;

where B(x 1 y) is the benefit to the offspring of the combined
effort contributed to raising the young, and S(x) and S(y) are
survival functions of the two parents, respectively; provided
both parents survive the future payoff is W(x, y). This can be
rearranged to give

W ðx; yÞ ¼ Bðx 1 yÞ
1 � SðxÞSðyÞ:

We analyze a model using the specific benefit and survival
functions

Bðx 1 yÞ ¼ 2ðx 1 yÞ � ðx 1 yÞ2;

SðxÞ ¼ 1

2
ð1 � xÞ;

where 0 , x, y , 1, and the resulting in the payoff function is

W ðx; yÞ ¼ 4½2ðx 1 yÞ � ðx 1 yÞ2�
4 � ð1 � xÞð1 � yÞ :

The differential of the BRF at the simultaneous ESS is

b#ðx*Þ ¼ 3ð15
ffiffiffi
3

p
� 26Þ

2ð26
ffiffiffi
3

p
� 45Þ

¼ �0:866:

The change in payoff to one parent at the simultaneous ES
effort when the other parent increases her effort above the
simultaneous ES effort is

@W

@u2
ðx*; x*Þ ¼ 0:

Results
The ES efforts are

x* ¼ xs ¼ ys ¼ 2
ffiffiffi
3

p
� 3;

therefore, both xs and ys are identical to x*; as expected.
Therefore, the payoff at the ES effort is

f ðx*Þ ¼ f ðxsÞ ¼ g ðxsÞ ¼ 4ð2 �
ffiffiffi
3

p
Þ;

therefore, both f(xs) and g(xs) are identical to f ðx*Þ; as
expected.

DISCUSSION

We have shown that the form of the payoff function can give
a general classification of two-player evolutionary games. The
relevant aspects of the payoff function are:

(a) the direction of the BRF at the simultaneous ESS, x*; and
(b) when both players are at the simultaneous ESS, x*; the

change in an individual’s payoff due to an increase of
their opponent’s action.

Figure 7
Level payoff curves for player 1, in Case D, with payoff function
W ðx; yÞ ¼ 114xð Þe�

2x
11y: Increasing payoff is in an upwards direction.

The graph shows the simultaneous ESS, x*; and Stackelberg ESS’s, xs

and ys, for the first and second players, respectively. The simultaneous
ESS is at the point where the best response line crosses the minimum
of a level payoff curve. The Stackelberg ESS’s are at the point where
the best response line forms a tangent with a level payoff curve.
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This results in the four cases mentioned above, and finally
when the change in (b) is zero, we have the symmetric case.

We have presented a comparison of simultaneous and
Stackelberg games for players with identical payoffs. Our re-
sults show that it is always better to go first in a Stackelberg
game (where the second player has information about their
opponent’s action) rather than play a simultaneous game (no
information). In other words, it is better to give information
about one’s action than to be in a game in which each player
is ignorant about the other’s action. However, it depends
on (a) and (b) as to whether it is better to go second in a
Stackelberg game rather than play a simultaneous game. In
the Stackelberg game, in both Cases A and B, it is better to be
the first player rather than the second. However, in the Stack-
elberg game, in both Cases C and D, whether it is better to go
first or second depends on the shape of the payoff curves for
the two players.

Our results show that an individual would prefer to play
a Stackelberg game rather than a simultaneous game provided
they were the first player in the Stackelberg game. Now as-
sume an individual will not know which player they would
be in the Stackelberg game. In this case, if the BRF is decreas-
ing at the simultaneous ESS, they may do worse (if the second
player) by playing a Stackelberg game. However, if the BRF is
increasing at the simultaneous ESS, both players do better by
playing a Stackelberg game. Therefore, we would expect se-
lection to act on the decision process that determines the
actions so that one of the players has information about the
decision of the other player before it makes its own decision.

This analysis has gone beyond Sjerps and Haccou (1993) by
categorizing two further mathematical cases. In their exam-
ples, the change in (b) was always negative (i.e., Cases A and
C) because the model involved two female insects ovipositing
on the same host, so if one female increased her clutch size,
she would reduce the other female’s payoff. We introduced
the two cases where the change in (b) was positive, giving
biological examples involving parental effort and predator in-
spection.

The games we have illustrated, using both the simultaneous
and Stackelberg models, involve only two decisions, one by
each player. However, this is not the only approach to model-
ing such interactions. Indeed, in some circumstances, this
type of model may not be realistic. In many cases, a game in
which the final efforts are negotiated, through a series of
responses by one player to the other, may be more suitable.
McNamara et al. (1999) give an example of a model using
ES negotiation rules rather than ES actions, as in this paper.
However, the Stackelberg game may still give a simple but
accurate model for certain biological interactions.

Abe et al. (2003) compare a simultaneous game with a Stack-
elberg game to model the sex ratio of two female parasitoid
wasps ovipositing sequentially on the same host. At first
glance, this may appear to be very similar to Case A, which
we illustrated using the Cant (1998) model of two females
laying eggs in the same location and is also illustrated in Sjerps
and Haccou (1993). However, in our Stackelberg games, both
players have the same payoff function (i.e., the two players
may be thought of as identical). In comparison, Abe et al.
(2003) model a Stackelberg game where the players have dif-
ferent payoff functions (i.e., they are not identical players). In
their model, there is a probability p that the second foundress
will oviposit on the same host. Therefore, the payoff to the
first foundress depends on this value p, whereas the payoff to
the second foundress does not. Abe et al. (2003) have also
introduced a factor C, the relative competitive ability of sons
produced by the second foundress to those produced by the
first, which further increases the asymmetry of the payoffs.
Pen and Taylor (2005) compared the simultaneous and

Stackelberg (sequential) game in modeling the sex allocation
conflict between queen and worker hymenopteran eusocial
insects, which also have asymmetric payoffs because the
preferred queen sex ratio is 1:1 male:female but the workers’
is 1:3. Therefore, our analysis cannot be applied to either
of these examples. However, an interesting extension of our
analysis would be a similar analysis of games between individ-
uals with different payoff functions.

Another example, in which the players have different payoff
functions, is a sperm competition game between sneaks and
guarders (Parker, 1990). This type of game is relevant in many
types of animals such as insects, birds, rodents, and even hu-
mans (Birkhead and Møller, 1998). A guarder male is perma-
nently paired with a mate, but the sneak male may obtain
opportunistic matings with females that are already paired.
Assuming the detection by a guarder of a sneak mating is rare
(i.e., has probability much less than 1), the payoff functions
for the sneak and guarder are different. However, if we assume
a detection is made, the payoff functions become identical,
and the game falls into Case C in our analysis.

There are parallels between continuous two-player games
and discrete 2 3 2 games. Rapoport (1967) describes the four
archetypal 2 3 2 games: ‘‘Game of Chicken,’’ ‘‘Battle of the
Sexes,’’ ‘‘Apology,’’ and ‘‘Prisoner’s Dilemma.’’ The 2 3 2
games involve two players who can both choose one of two
options. The simultaneous game solution is identical to the
‘‘natural outcome’’ in Rapoport’s paper (the strategy that will
minimize a player’s loss were he to suffer one). In the Game
of Chicken, two hooligans drive at each other down a narrow
lane. The first to swerve loses face among his peers, but if
neither swerves, both die. This is similar to Cases A and B in
our categorization. If one player chooses first (i.e., not to
swerve), then the other must swerve (to minimize his loss),
so the first player in the Stackelberg game receives the highest
payoff, followed by both players in the simultaneous game
(both swerve), followed by the second player in the Stackel-
berg game. This means that it is advantageous to declare one’s
intentions in this game. It follows that an omniscient player
that can perceive the intention of the other player is at a dis-
advantage (Brams, 1983). In the Battle of the Sexes, the hus-
band wishes to go to a football match and the wife wishes to go
to the opera, but both would prefer to be together rather than
apart. In Apology, two neighbors have quarreled and both
would benefit from going next door and apologizing. The
one who apologized would pay for the gain with a ‘‘loss of
face,’’ but if both go to each other’s house to apologize then
both would lose out as neither would be at home. Battle of the
Sexes and Apology are similar to Cases C and D because both
Stackelberg players receive a higher payoff than players in
a simultaneous game. The Prisoner’s Dilemma does not fit into
any of Cases A–D because the best response to an opponent
does not depend on the opponent’s action, consequently, the
simultaneous and Stackelberg solution are the same.

This paper is mainly concerned with exposing the logic of
when it is advantageous to give reliable information on inten-
tions in an interaction and when it is disadvantageous to re-
ceive such information. Different mechanisms of information
transfer are pertinent in different situations, and it is not our
intention to review these in detail. Nevertheless, it is instruc-
tive to consider information transfer in the particular case of
parental care and desertion decisions in birds. Suppose each
parent must decide whether to care for the young or desert.
Desertion is an advantage to a parent, provided the other
parent cares for the current young, because it provides oppor-
tunities for further matings. Thus, there is a conflict of in-
terest between the parents, with each preferring the other
to care. In many species, the male has the opportunity to
desert immediately after fertilization, whereas the female

McNamara et al. • Is it better to give information, receive it, or be ignorant? 449

D
ow

nloaded from
 https://academ

ic.oup.com
/beheco/article/17/3/441/201986 by guest on 13 M

arch 2024



must wait until young are born. The desertion game between
the parents is then a Stackelberg game with the male choosing
first. It may, however, be advantageous for the male to wait
until eggs are laid so as to guard his paternity. If the male does
wait and the female can hide the fact that the eggs have been
laid, as in the Penduline Tit (Valera et al., 1997), the female
may gain an advantage and be able to decide first. Theory also
suggests that another strategy for the female may be to lose
energy reserves before the male can desert (Barta et al., 2002).
Provided that the male is able to observe this, and a lean
female cannot care alone, the female has given him reliable
information that she cannot care on her own and will desert if
he deserts. This forces the male to care, allowing her to desert.

Our results enable us to interpret how animals should re-
spond in biological situations when they have information
about the action of their ‘‘opponent,’’ and how they should
respond when they do not.

APPENDIX

The payoff for Example A1 is

W ðy; xÞ ¼ ð1 � l� kxð11 r ÞÞy � ky2:

By maximizing W(y, x), we find that the best response to x is
given by

bðxÞ ¼ max
1 � l

2k
� xð11 rÞ

2
; 0

� �
; ð15Þ

which takes account of the fact that neither female can lay less
than zero eggs.

A Nash equilibrium requires that a strategy is a best re-
sponse to itself. It is clear that laying zero eggs is not a best
response to an opponent laying zero eggs, so therefore we can
ignore b(x) ¼ 0.

We now impose the Nash equilibrium condition,
x* ¼ bðx*Þ; on the BRF above, to give us the simultaneous ESS

x* ¼ 1 � l
kð31 r Þ:

Note that this is not the same as n* in Cant (1998), which
represents the optimal clutch size if only one female lays eggs
in a location.

The payoff to both females using the simultaneous ESS is

f ðx*Þ ¼ W ðx*; x*Þ ¼ ð1 � l� kx*ð11 r ÞÞx* � kðx*Þ2

¼ ð1 � lÞ2

kð31 rÞ2:

The payoff to the first Stackelberg female is

f ðxÞ ¼ W ðx; bðxÞÞ ¼ ð1 � l� kbðxÞð11 rÞÞx � kx2:

Substituting b(x) into this equation and maximizing f(x) gives
the best action of the first Stackelberg female

xs ¼
ð1 � lÞð1 � r Þ

2kð1 � rð21 rÞÞ: ð16Þ

However, from Equation 15, the condition for b(x) . 0 is

x ,
1 � l

kð11 r Þ:

Therefore, for b(x) . 0 and for Equation 16 to be an ESS, the
following condition must hold

ð1 � lÞð1 � r Þ
2kð1 � rð21 rÞÞ ,

1 � l
kð11 r Þ0 r ,

ffiffiffi
5

p
� 2:

When this condition is met, the numbers of eggs laid (the
Stackelberg ES action) by the first female is

xs ¼
ð1 � lÞð1 � rÞ

2kð1 � r ð21 rÞÞ;

and the response by the second female is

bðxsÞ ¼ ys ¼
ð1 � lÞð1 � rð41 rÞÞ

4kð1 � rð21 rÞÞ :

It can be shown that ys , x* , xs ; as expected.
The payoff to each female is as follows

f ðxsÞ ¼ W ðxs ; ysÞ

¼ ð1 � lÞ2ð1 � rÞ
2kð1 � rð21 rÞÞ

3 1 � ð1 � r Þ
2ð1 � rð21 rÞÞ �

ð11 r Þð1 � rð41 r ÞÞ
4ð1 � rð21 rÞÞ

� �
;

and

g ðxsÞ ¼ W ðys ; xsÞ

¼ ð1 � lÞ2ð1 � rð41 rÞÞ
4kð1 � rð21 rÞÞ

3 1 � ð1 � r 2Þ
2ð1 � r ð21 rÞÞ �

ð1 � rð41 rÞÞ
4ð1 � rð21 rÞÞ

� �
:

Therefore, g ðxsÞ, f ðx*Þ, f ðxsÞ; as expected.

Error in Cant (1998)

The condition for r and the value for xs when r ,
ffiffiffi
5

p
� 2 is

different from the result documented in the paper by
Cant (1998). The condition Cant found was r ,

ffiffiffi
2

p
� 1 and

the value was xs ¼ ð1 � lÞ=kð2 � r ð11rÞÞ:
The result for when r .

ffiffiffi
2

p
� 1 found by Cant (1998) is

identical to our result for r .
ffiffiffi
5

p
� 2. However, this is found

by using the best response b(x) ¼ 0, which as discussed earlier,
is not a Nash equilibrium, so it should be ignored.
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