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Life history consequences of social complexity:
a comparative study of ground-dwelling
sciurids

Daniel T. Bhnnstem anA Kenneth B. Armitage
Department of Systematic^ and Ecology, University of Kansas, Lawrence, KS 66045, USA

We examined life-history consequences of increased social complexity in ground-dwelling schnid rodents. We derived a contin-
uous metric of social complexity from demographic data. Social complexity increased with the number of age-aex "roles" that
interacted in a social group. Data were analyzed by computing phylogeneticaDy independent contrasts and by using phylogenetic
autocorrelation to estimate and then remove the marimiim amount of variation in life-history variables that could be attributed
to phylogenetic similarity. Analyses that incorporated estimates of phylogeny generated consistent results. As social complexity
increased, a smaller proportion of adult females bred, there was a greater time to first reproduction, litter size decreased, and
there was greater first-year offspring survival. Social complexity influenced neither gestation nor lactation time. Thus, social
complexity has costs in terms of a reduction in the annual per-capita number of offspring produced but benefits in terms of
enhanced offspring survival. Kay words: Cynomys, costs and benefits of sociality, life history, Marmoto, social complexity, Sp*r-
mophihis. [Bthav Eat 9:8-19 (1998)]

Sociality involves benefits and costs of forming aggregations
and of behaviors in the aggregations. Generally, animal*

are hypothesized to aggregate to reduce predation risk and/or
because of the distribution of critical resources (Alexander,
1974). Social structure and social behaviors may further in-
crease the benefits of aggregation (Alexander, 1974). Thus, be-
haviors such as alarm calling (Sherman, 1977), aQogrooming
(Hart and Hart, 1992), dominance relationships (Bernstein,
1981), food calling and sharing (e.g., Benz, 1993; Goodall,
1986; Hauser 1996), helping (e.g., Brown, 1987), individual rec-
ognition (Wrangham, 1983), mating systems (Emlen and Or-
ing, 1977), and a variety of other social behaviors can evolve
and be elaborated once social groups have formed. Aggrega-
tion has its costs: more competition for scarce resources (Wran-
gham et aL, 1993); monopolization of resources by dominant
animal* (Wrangham, 1981); increased aggression (Walters and
Seyfarth, 1986); increased risk of parasite and disease transmis-
sion (Brown and Brown, 1986; Mooring and Hart, 1992); at-
traction of more predators (Kruuk, 1964; Pienkowski and
Evans, 1982); increased reproductive competition, which may
lead to infanticide (Hoogbnd, 1995); and prevention, delay, or
an influence on reproduction in certain animals (e.g., Abbott,
1987; Packer et aL, 1995; Wasser and Barash, 1983). These and
other factors may lead to variation in reproductive success
among group-living animal*

Each of these specific benefits and costs emerges from so-
ciality. While not specifically stated and defined, more of these
costs and benefits are assumed to emerge as social complexity
increases. In this paper we explicitly address the question of
costs and benefits of increased social complexity. We focus on
ground-dwelling schirid rodents (marmots, Marmota spp.;
prairie dogs, Cynomys spp.; and ground squirrels, Sptrmophitus
spp.) and review the literature to summarize a series of life-
history variables. Ground-dwelling sciurids are an ideal taxon
about whiab to ask questions regarding the evolutionary im-
pacts of social variation. A large body of literature exists on
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social variety in marmots, prairie dogs, and ground squirrels
(e.g., Barash, 1989; Bibikow, 1996; Hoogland, 1995; Murie and
Michener, 1984). Social organizations range from species in
which individuals disperse immediately after weaning and live
more or less solitary lives, to species in which individuals ex-
hibit delayed dispersal and in which overlapping generations
of individuals share a home range and interact amicably.
Moreover, species can be placed objectively along a continu-
um of social complexity (see below and Bhimstein and Ar-
mitage, 1997). We ask the following six life-history questions:
Does social complexity influence (1) die percentage of adult
females who breed, (2) the time to first reproduction, (3)
gestation time, (4) average litter size, (5) lactation time, and
(6) percent juvenile survival to age 1?

OOXplBXttV

The term "complexity" is often used but rarely defined ex-
plicitly (McShea, 1991, 19%). Complexity can be explicitly
defined using information theory (Shannon and Weaver,
1949). A more complex system requires more information
(specifically "binary units") to be fully described than does a
less complex system. With respect to sociality, a species with
10 different social behaviors is more complex than one with
a single social behavior because more discrete behaviors can
be used in more ways (Bonner, 1988). As the number of in-
teracting individuals increases, there is an opportunity for
more social interactions and for more social behaviors (e.g.,
solitary animal* do not need a repertoire of sophisticated
dominance behaviors). We might assume that a species typi-
cally living in large social groups is more complex than a spe-
cies typically living in smaller social groups. Group size has
been used as a measure of sociality (e.g., Eisenberg, 1981;
Janson and Goldsmith, 1995), yet social group size alone is an
inad^rjuate metric of social complexity because social behav-
ior involves relationjnTps between individuals, and- the divw-
sity of these relationships is not described by simply using
group size. Because social systems are typically defined cate-
gorically (e.g., "monogamous" versus "polyandrous" versus
"polygynous"), it is not immediately obvious how to objec-
tively compare different social systems with respect to varia-

D
ow

nloaded from
 https://academ

ic.oup.com
/beheco/article/9/1/8/239573 by guest on 09 April 2024



BlumWrin and Annitage • life history consequences of sociality

Life History Consequences
of Social Complexity

Environmental Constraint*

Social Complexity

Time to 1st Reproduction

% Survival to Age 1

% Adult Females Breeding

Average Litter Size

Gestation Length

Lactation Length Figure 1
Some cunct and conaequences
of social complexity. Causality is
justified in text.

rion in complexity. A new metric of social variation is required
to specifically quantify complexity.

Social complexity emerges from groups of individuals that
interact over some time. Within a group, animal* may be de-
scribed as having certain "roles"—socially expected behavior
patterns (Blumstein and Annitage, 1997). For instance, there
may be a dominant and a subordinate role. Or, there may be
a breeder and a nonbreeder role. An individual's role may
change over time. To quantify social complexity, it is crucial
to identify roles. Practically, this is quite difficult to do in a
comparative study because different studies emphasize differ-
ent aspects of sociality. However, it is possible to define "de-
mographic roles" (e.g., adult female/adult male, subadult fe-
male/male, etc), and these demographic roles should de-
scribe the potential for more complex social behavior.

Social complexity also implies social flexibility, and intra-
sperific social variation b often adaptive (Lott, 1991). Con-
sider two species with two demographic roles. Each of these
roles has the same mean size (e.g., six adult males and six
adult females), but the species differ in the variance around
these means. Because it requires more information to de-
scribe a more variable system than a less variable system, the
more variable system is more complex. For instance, if males
always aggregate in groups of six (i.e., no variation), then it
requires little information to describe male social structure—
males aggregate in groups of six. Additional variation requires
more information to describe a demographic role. Socially, a
species that must be able to adapt to different types and num-
bers of potential social partners is more complex than one
with a fixed number of social partners. Thus, social complexity
increases with more demographic roles and when the number
of individuals in a given role varies. It is also likely that more
precisely defined roles will reveal more variation in social com-
plexity. For instance, the six males may or may not have dom-
inance relationships.

We previously denned social complexity using information
theory (Blumstein and Annitage, 1997). We focused on social
group structure, where we denned a social group as a group
of individuals that remain together and interact more with
each other than with other conspecifics (Slobodchikoff and
Shields, 1988; Wilson, 1975). For ground-dwelling sciurids, an-
imals in the same social group have extensively overlapping
home ranges, and animals may share sleeping burrows during
much of the year. In suitable habitat, there may be many con-
tiguous social groups (e.g., a prairie dog "town," or a ground
squirrel "colony"). We focus on the individual social units
within this higher level aggregation because the number of

contiguous social groups will be influenced strongly by the
amount of suitable habitat and by a species' total energetic
requirements.

Schxrid demographic roles include adult females/males, 2
year olds, yearlings, and juveniles. Not all species have all five
roles. For each role a species had, we summarized the fre-
quency distribution of the numbers of animal* (Le., 0 males
in 1 group, 1 male in 20 groups, 2 males in 36 groups, S males
in 0 groups, etc). From frequency distributions like these, we
quantified the amount of information required to describe
each demographic role.

defines the number of bits of information required to de-
scribe a role, H(X)r, given the relative frequency, p(x), of each
of the discrete counts (i.e., 0, 1, 2, S, . . . ) of animal* in that
role. We summed the H(X)r for each role to get an H(X)t,
the total number of bits required to describe a species given
the number of demographic roles. Because timing of natal
dispersal from sciurid social groups varies, we multiplied
H(X)t by a number reflecting the time to natal dispersal (1
m dispersed as juveniles, 2 ** dispersed as yearlings, 3 " dis-
persed at age two or older), and log transformed the product
to generate a number, SQ, a value reflecting social complex-
ity. In doing so we are aware that sciurids with more demo-
graphic roles also have delayed dispersal. In fact, this multi-
plication has limited effects on our data set The multiplica-
tion emphasizes the potential importance of kin structure, a
key characteristic of sociality and social complexity.

At first glance, our use of social complexity to study life
history consequences may appear circular. Our metric of so-
cial complexity, SQ,, is largely determined by a species' de-
mographic structure and thus is influenced by variables such
as the time to natal dispersal. However, there is no a priori
reason that more socially complex species should delay dis-
persal. The ground-dwelling sciurids we studied increased
complexity largely by delaying dispersal, but social complexity
could also increase via immigration and not delayed dispersal
(e.g., imagine a college dormitory, a very complex "social
group," formed exclusively by immigration).

Given our metric of social complexity, we focused on life-
history consequences of social complexity and thereby imply
causal relationships between social complexity and each of
our life-history variables. Studying causal processes is difficult
with some comparative analyses of continuous data because
the sequence of change is not specified (e.g., Promislow, 19%;
Ridley and Grafen, 1996). Figure 1 specifies several potential
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causes and consequences of social complexity. Complex social
behavior is traditionally expected when there are environ-
mental constraints (e.g., Emlen, 1991; Emlen and Yew-en-
camp, 1983) that may directly, or indirectly (acting through
life history variables) influence social complexity. Direct fac-
tors such as predadon (Alexander, 1974; Hoogland, 1995),
habitat patchiness (e.g., Michener, 1984), and growing season
length (e.g., Annitage, 1981) may select for aggregation, lead-
ing to an increase in social complexity. life-history variables
such as body mass (Annitage, 1981; Barash, 1989; Bekoff et
aL, 1981) or the length of the active season for hibernating
mammals (Annitage, 1981; Barash 1989) may also influence
social complexity. Interestingly, although not the topic of this
paper, we found no relationship between active season length
(number of months active above ground and not hibernating)
or body mass (minimum adult female body mass) on social
complexity in phylogenetic analyses.

In this paper we focus on six nfe history consequences of
social complexity. We had a priori expectations that social
complexity could influence them all (Annitage, 1981, 1996).
However, causality might be symmetric for at least two of these
variables: percent survival to age 1 (after controlling for body
mass) and die percentage of adult females who bred (after
controlling for body mass). If more individuals survive to age
1, and if dispersal is delayed, then social complexity will in-
crease because the number of age/sex classes increases. If
more adult females breed, and if diese breeding females are
in the same social group, then social complexity may increase.
Alternatively, if only older adult females breed while younger
females remain in the social group, social complexity may in-
crease. For these two variables, a potential unimplemented
solution would be to hypothesize specific causal models (e.g.,
Asher, 1983) and study the independent paths to and from
these two variables via social complexity. Currently, skeptics
may interpret the results as demonstrating a strong, noncausal
relationship between social complexity and these two life-his-
tory variables.

METHODS

•mtive data set

To calculate social complexity, we reviewed the literature for
studies that reported demographic information. A number of
studies did not report litter size distribution. If a mean and
standard deviation were reported, we assumed litter size was
normally distributed to estimate litter size distribution. We ob-
tained sufficient data to calculate social complexity for 25 spe-
cie*: 7/14 marmots, 5/5 prairie dogs, and 13/38 Sptrmophihis
ground squirrels. For these 25 species, we summarized infor-
mation on the following seven life-history variables, selected
both because they are generally available and because they
have been used in previous comparative studies (see Appen-
dix for comparative data and associated references):

1. Percent adult females who breed. This was generally cal-
culated as a simple average. It was calculated as a weighted
average in a few cases where there was age-specific variation
and large sample sizes (e.g., Hoogland, 1995).

2. Time to first female reproduction. This was scored as 1,
first reproduced as yearlings (including all species for whom
it was usual); 2, first reproduced as 2 year olds; 3, first repro-
duced as & 3 year olds.

3. Gestation time. This was the number of days from fertil-
ization to birth.

4. Average litter size. If there was a choice, we summarized
litter size at emergence from the natal burrow rather than at
birth. Some Spermophilus data include embryo counts and
may overestimate emergence litter size. Because birth mass

was generally not available, we could not ra1ni1an» Utter
mass—a potentially better estimate of reproductive investment
(e.g., Gittleman, 1989; Moehlman and Hofer, 1997).

5. Lactation time. This was die number of days from birth
to weaning. Most species are weaned at emergence from their
natal burrows, and many estimates were based on emergence
date.

6. Percent male/female survival to age 1. We averaged male
and female survival to age one. We attempted to not conflate
dispersal and mortality when sufficient data were provided.
Our average survival value may overestimate mortality for spe-
cies that disperse in their first year of life.

7. Minimum female body mass. Early-season mean body
mass was used when given. If not given, we calculated mini-
mum mass from the first or second month's post-emergence
body mass. If a range of values was given, we chose die lowest
value in that range.

We regressed our measure of social complexity, 5Q, against
life-history variables. To control for possible phylogenetic non-
independence on die Hfe-history variables and on sociality, we
examined the relationship using "standardized independent
contrasts" calculated for each variable and amimmg several
phylogenetic hypotheses (see below). We used Purvis and
Rambaut's (1995) statistical package, CAIC, to calculate in-
dependent contrasts for social complexity and each of the life-
history variables. As required by the method, regressions of
these standardized contrasts were through die origin. Some
of these life-history variables may be influenced by body mass
(e.g., Annitage, 1981; Bekoff et aL, 1981; Gittleman 1989; Har-
vey and Chitton-Brock, 1985; Moehlman and Hofer, 1997; see
below). To remove variation in those life-history variables diat
was a function of body mass, we regressed contrasts of mini-
mum female body mass against contrasts of each variable pre-
viously reported to be influenced by mass,- and used the re-
siduals for subsequent analyses (Losos, 1990; Martins and Gar-
land, 1991).

No published phylogenetic hypothesis includes all species
of interest We eagerly anticipate die publication of inclusive
and well-supported phytogenies and report the results from
five different partial working phylogenetic hypotheses. First,
we generally inferred phytogeny from taxonomy (Nawak and
Paradiso, 1983), but added additional information where
known (Hoffmann and Nadler, 1968; Howefl, 1915, for mar-
mots; Hafher, 1984, for sciurid subgenera), and refer to diis
tree as "tree 1" (Figure 2). Second, because Black (1972)
assumed that the genus Marmota evolved in die New World
from a "woodchuck-like" ancestor, we switched the location
of M. marmota and M. monax to create "tree 2" (Figure 2).
Thomas and Martin (1993) questioned die ancestral location
of die genus Marmota. They suggested the genus Marmota
evolved recently from Spermophilus ancestors. We calculated
independent contrasts from "tree 3" (Figure 2), where Cy-
nomys, Marmota, and die remaining SptrmophHtu subgroups
branch simultaneously, and "tree 4" (Figure 2), which reflect-
ed a recent origin of marmots. We generated "tree 5" (Figure
2) to recognize evidence suggesting Cynomys is die crown
group of die subgenus Spermophitus in die currently recog-
nuetj genwSpermopMlus (Dobson, 1985, and references
therein; Goodwin, I99U). Finally, we calculated iadapcadsnt
contrasts with two other possible tree topologies; one suggest-
ed by R. S. Hoffmann (personal communication) and the oth-
er derived from diat where Marmota and Cynomys were re-
solved differently. Although we do not illustrate or report re-
sults based on those trees here, the independent contrasts
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Figure 2
Phyiogenetic hypotheses used to calculate contrasts. These are
partial working phytogenies of sciurid rodents recognized genera
and species not included in these analyses are not illustrated. Tree
1, a taxonomically derived tree with phyiogenetic information
added where known. Tree 2, Marmota monax was shifted to reflect
its possible ancestral location in Marmota. Letters marked at higher
nodes on tree 1 and tree 2 are used to illustrate structure of the
following two trees. Tree 3 illustrates an unresolved origin of
Marmota. Tree 4 illustrates a recent origin of Marmota and other
sounds from a subgroup of species currently classified u
SptrmophUus. Tree 5 illustrates Cynotnys as the crown group of the
subgenus SptrmopMius.

calculated from them led to the same conclusions as those
based on trees 1-5.

To calculate standardized independent contrasts, we set all
branch lengths equal and selected the "crunch" option in
CAIC Setting branch lengths equal assumes an underlying
evolutionary model of punctuadonal change (e.g., Harvey
and Pagel, 1991). In the absence of information about branch
lengths, assuming punctuadonal change is much more
straightforward than estimating an infinite number of possible
branch length scenarios. Given no independent measures of
branch lengths for our partial phytogenies, we did not calcu-
late contrasts assuming Brownian motion trait evolution.

Each comparative method has strengths and weaknesses
(Martins and Hansen, 1996). In addition to calculating inde-
pendent contrasts, we- also analyzed the data with phyiogenet-
ic autocorrelation (Cheverud et al., 1985; Gittleman and Rot,
1990; Gittleman and Luh, 1992). Phyiogenetic autocorrela-
tion permitted us to estimate and statistically remove the max-

imum amount of variation in each variable (social complexity
and each of the life-history variables) that could be explained
by phyiogenetic similarity. This is admittedly a rough metric
that perhaps better quantifies the degree of evolutionary
change in a dade; strictly it should not be interpreted (Losos
and Miles, 1994) as the amount of adaptive versus nonadap-
tive trait variation (Cheverud et aL, 1985). Phyiogenetic au-
tocorrelation assumes explicitly statistical model* of trait
change that vary according to an autoregressive model (Mar-
tins, 1995; Purvis et al., 1994) and, under a Brownian-motion
model of evolution, may produce erratic results with sample
sizes < 40 (Martins, 1996). We used a single phyiogenetic hy-
pothesis, die taxonomy reported in Nowak and Paradiso
(1985), to estimate the "phyiogenetic distance matrix." The
phyiogenetic distance matrix is a "weighting matrix" that de-
fines die relative weight dial each individual species' trait val-
ue will contribute when searching for autocorrelation. The
/-ia««i/-ai taxonomic classification recognizes subgenera in bodi
Cynomyj and Spcrmopfuhis and recognizes two subtribes: one
containing Marmota and the other containing both Cynomys
and Sptrmophxhu. We used die program "PA." (Luh et al,
1995) to fit phyiogenetic autocorrelation*.

RESULTS

DOCS SOdsl 4fl*ni|>l»^^y fllfhif IM*f *̂ ** i^rr^iiiMfm o f nAnlt
females who breed?

We had no a priori reason to expect that a species' body mass
should influence die proportion of females who breed. Thus,
we regressed social complexity against die percentage of adult
females who breed to study costs and benefits of social com-
plexity.

No matter how we examined the relationship, more socially
complex species had a smaller percentage of adult female
breeders (Table 1, Figure 3). Different methods lead to dif-
ferent specific estimates of die amount of variation explained
by social complexity (Table 1). Explained variation ranged
from 24% (based on contrasts calculated using tree 4), to 58%
(calculated using raw data). All mediods to adjust for phyio-
genetic similarity reduced the amount of explained variation.

"Correlograms" (plots of Moran's I, die autocorrelation
statistic, versus taxonomic level) suggested significant auto-
correlation at certain taxonomic levels that disappeared after
we calculated "phytogeny-free" residuals. Phyiogenetic auto-
correlation results suggest a maximum of 33% of the variation
in die percentage of adult females who breed may be attrib-
uted to phyiogenetic similarity.

Does social complexity influence die time to first
reproduction?

Body size may explain variation in die time to reproduction
(Gittleman, 1989; Harvey and Clutron-Brock, 1985; Moehl-
man and Hofer, 1997). Thus, we analyzed the relationship
between social complexity and time to female reproduction
after removing variation in time to reproduction explained by
minimum female body mass.

There is a significant, positive relationship between social
complexity and the time to first reproduction (Table 1, Figure
4). More social species first breed at older ages. Interestingly,
after removing variation in the time to reproduction account-
ed for by body mass, analyses based on independent contrasts
and phylogeny-free residuals both explained more variation
than the analyses on nonindependent raw data. As much as
75% of the variation in time to first reproduction was ex-
plained by social complexity (in die contrasts analysis using
tree 3).
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lable l
VuiftUoo expUned by aocfal

Trend Raw data

0.58
0.50
0.22
0J7
0
0J4

Raw
mass-free
data

__.
0J0
0
042
0
,

Tree 1

0.41
0.61
0.04
0.14*
0
0.32

Tree2

0.25
0J3
0.19
0.19
0
0.34

TreeS

048
0.75
0.10
048
0
0J6

Tree4

044
OJl
0.03
042
0
0J0

TreeS

0.36
OSS
0.15
041
0
0.14

Autocor-
relation

0.48
0.67
0
041
0
0J3

Percent frmalif breed
Time to first reproduction
Gestation time (days)
Average Utter size
Lactation time (days)
Survival to age 1

'Variation explained by social complexity (adjusted It. bold if p < .05) for six life-history traits analyzed difEerent ways. Trend is the direction
of significant trends (+ or —). Raw data is the variation in the dependent variable explained by social complexity from regressions of die raw
data. Raw mats-free data is the variation explained by sociality after variation explained by body mass has been removed fi-om the dependent
variable. Tree 1, 2, 3. and 4 are results calculated by regressing independent contrasts of social complexity against the independent contrast!
of each dependent variable. The values differ in the pbytogenetic hypotheses used to calculate contrasts. Autocorrelation is the result of
regressing phytogeny-free residual* of sociality against each dependent variable. If there is a value in the raw mass-free data column, then
analyses are conducted on mas»-free residuals (see text for details).

'p- .0519.

Correlograms suggested significant autocorrelation at all
taxonomic levels that disappeared after we calculated phytog-
eny-free residuals. Phyiogenedc autocorrelation results sug-
gest a maximum of 60% of die variation in die time to first
female reproduction may be attributed to phylogenetic simi-
larity.

Does social * nplexity infln i gestation dine?

Body size may explain variation in gestation time (Annitage,
1981; Bekoff et aL, 1981; Harvey and Chitton-Brock, 1985;
Moehlman and Hofer, 1997). Thus, we analyzed die relation-
ship between social complexity and gestation time after re-
moving variation in gestation time explained by minimum fe-
male body mass.

Although there is a significant positive relationship between
social complexity and gestation time in the raw data set, after
controlling for body mass, social complexity explained no sig-
nificant variation in gestation time (Table 1, Figure 5). Phy-

logeneticaHy based analyses produced mostly consistent, neg-
ative results: 19% of die variation was explained in contrast
analysis using tree 2, and 15% using tree 5 (Table 1). AD other
phylogenetically based analyses found no significant relation-
ship between social complexity and gestation time.

Correlograms suggested significant autocorrelation at sub-
tribe and tribe taxonomic levels, which disappeared after we
calculated phytogeny-free residuals. Phylogenetic autocorre-
lation results suggest that a maximum of 47% of the variation
in the gestation time may be attributed to phylogenetic simi-
larity.

Does social fuwp twfl™»««-» litter size?

Body size may explain variation in average litter size (Anni-
tage, 1981; Harvey and Chitton-Brock, 1985; Moehlman and
Hofer, 1997). Thus, we analyzed die relationship between so-
cial complexity and average litter size after removing variation
in litter size explained by minimum female body mass.

• 3 <D
COQ. -30

0 .1 2 3 A
Standardized Contrasts of

Social Complexity
Figures
The relationship between standardized contrasts of locial
complexity and standardized contrasts of the percentage of adult
females who breed. Contrasts calculated from tree 1, and the
regression is through the origin. Table 1 compares the significance
and magnitude of explained variation for this and the other
analyses.

0 .1 2 3 A

Standardized Contrasts of
Social Complexity

Figure 4
The relationship between standardized contrasts of social
complexity and standardized contrails of the body mass-free
residuals of time to first female reproduction. Contrasts calculated
from tree 1, and the regression is through the origin. Table 1
compares the significance and magnitude of explained variation for
this and the other analyses.
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„_ 1.5i

0 .1 2 3

Standardized Contrasts of
Social Complexity

The relationship between standardized contrasts of social
complexity and standardized contrasts of the body mass-free
rctktnalt of gestation time. Contrast* calculated from tree 1, and
the regression is through the origin. Table 1 compares the
significance and magnitude of explained variation for this and the
other analyses.

0 .1 2 3 A

Standardized Contrasts of
Social Complexity

Figure 6
The relationship between standardized contrasts of social
complexity and standardized contrasts of the body-mass free
residuals of the average litter size. Contrasts calculated from tree 1,
and the regression is through the origin. Table 1 compare* the
significance and magnitude of explained variation for this and the
other analyses.

There is a significant, negative relationship between social
complexity and average litter size (Table 1, Figure 6). More
social species have smaller litters. After controlling for varia-
tion accounted for by body mass, 14-28% of the variation in
litter size was explained by social complexity in contrast-based
analyses, and 21% was explained by social complexity after
removing the effects of phytogeny in the autocorrelation anal-
ysis.

Correlograms suggested significant autocorrelation at all
but the subgenus taxonomic level, which disappeared after we
calculated phylogeny-free residuals. Phylogenetic autocorre-
lation results suggest that a maximum of 17% of the variation
in average litter size may be attributed to phylogenetic simi-
larity.

lactation time?Does social complexity influ

Body size may explain considerable variation in lactation time
(Harvey and Qutton-Brock, 1985; Moehlman and Hofer,
1997). Thus, we analyzed die relationship between social com-
plexity and lactation time after removing variation in lactation
time explained by minimum female body mass.

There is no relationship between social complexity and lac-
tation time (Table 1, Figure 7). AD analyses produced consis-
tent results: no variation in lactation time was explained by
social complexity.

Correlograms suggested no significant autocorrelation at
any of the taxonomic levels we examined. Thus, we could not
estimate the amount of variation in lactation time explained
by phylogenetic similarity.

Doe* social i plexity influence juvenile aurvival to age 1?

We had no a priori reason to expect that a species' body mass
should influence survival to age 1. Thus, we regressed social
complexity against overall survival to age 1 to study costs and
benefits of social complexity.

No matter how we examined the relationship, more socially
complex species had a higher survival rate to age one (Table
1, Figure 8). Different methods lead to different estimates of
the amount of variation explained by social complexity (Table

1). About 30% of the variation in survival to age one (range
24-36%) was explained by social complexity.

Correlograms suggested significant autocorrelation at the
tribe level, which disappeared after we calculated phylogeny-
free residuals. Phylogenetic autocorrelation suggested a max-
imum of 4% of the variation in survival to age 1 was explained
by phylogenetic similarity.

DISCUSSION

To our knowledge, this is the first study to specifically examine
life-history consequences of social complexity. Moreover, and

CO

0 .1 2 3

Standardized Contrasts of
Social Complexity

Figure 7
The relationship between standardized contrasts of social
complexity and standardized contrasts of the body-mais free
Tti'fHP1* of lactation time. Contrasts calculated from tree 1, and the
regression is through the origin. Table 1 compares the significance
and magnitude of explained variation for this and the other
analyses.
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20
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0 .1 2 2
Standardized Contrasts of

Social Complexity
8

The relationship between standardized contrasts of social
complexity and standardized contrasts of the percent Juvenile
survival to age 1. Contrasts calculated from tree 1, and the
regression is through the origin. Table 1 compares die significance
and magnitude of explained variation for this and the other
analyse*.

unlike other current studies of complexity, we focused on the
consequences of complexity rather than on the evolution of
complexity itself (e.g., Bonner, 1988; McShea, 1991, 1996;
Szathmary and Maynard Smith, 1995). As sciurid social com-
plexity increased, a smaller proportion of adult females bred
(Figure S), age of first reproduction increased (Figure 4), lit-
ter size decreased (Figure 6), and first-year offspring survival
increased (Figure 8). Social complexity influenced neither
gestation time (Figure 5) nor lactation time (Figure 7). Thus,
social complexity has costs in terms of a reduction in the an-
nual per capita number offspring produced, but benefits in
terms of enhanced offspring survival.

It is not surprising that gestation and lactation time were
unaffected by social complexity. The times of gestation and
lactation are correlated with body size in mammals, but the
correlation with lactation is weak (Reiss, 1989). Gestation, but
not lactation, is correlated with body size in ground-dwelling
sciurids (Armitage, 1981). Both of these life-history variables
are more likely dependent on the physiological processes of
converting maternal energy into neonate energy. For exam-
ple, relative birth weight is proportional to adult metabolic
rate and the relative cost of producing an offspring is similar
for large and small mammal* (Rahn, 1982). Because milk pro-
duction and energy content of milk can vary widely, the time
of lactation can vary with environmental conditions (Peaker
et aL, 1984). Among ground-dwelling sciurids, the period of
lactation was positively correlated with the length of the active
season. For example, M. monax, with an active season of about
83 months, has a lactation period of 46 days, whereas M,
flaviventris, with an active season of about 4.5 months, has a
lactation period of 24 days (Armitage, 1981; this study).

The inclusion of pbylogenetic information to the compar-
ative study generated remarkably consistent results. Given
some uncertainty about historical relationships, we examined
several phylogenefic hypotheses and two daffweat compara-
tive methods; all led to consistent and interpretable results
which in some cases differed from analyses on raw data (see
Purvis et aL, 1994; but also see Ricklefs and Stark, 1996).
While we acknowledge more data and better phylogenetic res-
olution will permit better estimates of the exact relationship
between social complexity and these life-history variables, we

suspect, given the variety of hypotheses examined, they will
not change the major conclusions.

Armitage (1981) first suggested that sociality is a life-history
tactic in sciurid rodents. Both Armitage (1981) and Barash
(1989) noted that increased sociality reduces juvenile mortal-
ity by retention of juveniles in the social groups. Our com-
parative evidence suggests that this pattern is widespread
among ground-dwelling sciurids: more socially complex spe-
cies have a greater percentage of juveniles survive to age 1.
Arnold's (1993b) studies of thermoregulatory helping behav-
ior during hibernation in marmots provides direct evidence
that, by delaying dispersal, offspring can increase tile survival
of their younger siblings. We predict that more social species
will have more kin-selected (Hamilton, 1964) mechanisms to
increase offspring survivaL We acknowledge that kin selection
may also work on a larger spatial scale, and behaviors such as
alarm calls may benefit relatives not living in the same social
group (e.g., Sherman, 1977; but see Blumstein et aL, 1997).

Sociality has its costs in terms of the ability to produce off-
spring. As social complexity increased in sciurid rodents, few-
er females bred. After controlling for variation accounted for
by body size, we found that more socially complex species took
longer to first reproduce and had smaller litters. These pat-
terns suggest that some form of reproductive suppression
should be common in more socially complex sciurid rodents,
and perhaps more generally, in more social species. Certainly,
some of the most remarkable forms of reproductive suppres-
sion occur in highly social species with numerous roles within
a society (e.g., Htteroctphahis giaber. Faulkes et aL, 1991; social
insects: Brockmann, 1984). .

Additional demographic evidence exists for reproductive
suppression. Among several marmot species, the percentage
of females breeding increases with age. When older females
are removed from the population, or when the population
density is low, younger females breed (Armitage, 1996). In the
biennial breeding M. caHgata, a female skips an additional
year when her co-resident breeds (Wasser and Barash, 1983).
In M. flaviventris, weaning success is lower for females living
in proximity to other adult females than in those living with
no other adult females (Armitage, 1986).

The reproductive costs of sociality raise the question of why
reproductivery suppressed females remain in social groups.
Several possibilities come to mind. First, survivorship of dis-
perses is likely to be less than those who become reproductive
on their natal home range because dispersers are more sus-
ceptible to predation than are residents (Hoogland, 1995; Van
Vuren and Armitage, 1994). Second, dispersers must either
colonize new habitat or invade an established group. Immi-
grants encounter resistance and may receive wounds inflicted
by residents (Garrett and Franklin, 1988). Consequently, im-
migration rates may be low (Sherman and Morton, 1984), and
immigration into "higher-quality" habitat patches may not oc-
cur annually (Armitage, 1984, 1991). For most M. flaviventris
social groups, recruitment (retention of individuals in their
natal social group) greatly exceeds immigration; immigration
is likely to occur only when resident mortality is high and
unoccupied areas are available for settlement (Armitage,
1988). In those species with low social complexity and high
rates of population turnover (e.g., & bddingi Sherman and
Morton, 1984; 51 richardsonik Mkhener and Michener, 1977),
individuals that survive hibernation have a high probability of
finding. JOfant space and breeding. However, some species
with high social complexity have a low rate of population turn-
over, thus AL flaviventris (Armitage, 1988, 1991), C hutovi-
danus (Hoogland. 1995), and M. otympus (Barash, 1973) hab-
itats may approach saturation (Armitage, 1996). For socially
complex species, an individual's probability of future repro-
duction may increase by remaining in its natal habitat rather
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than dispersing in an attempt to reproduce at a younger age.
However, individuals should disperse when the costs of re-
maining in their natal group are greater than the costs of
dispersing. If nonbrecding residents can gain indirect fitness,
delayed dispersal may be favored (e.g., Arnold, 1993). Dis-
persal should be delayed to an age when the probability of
successful colonization is greater than that of dispersing at a
younger age (Armitage, 1992).

Several factors should enter into the decision-making pro-
cess of whether to disperse or to remain philopatric Decisions
may differ between the sexes depending on which sex nor-
mally disperses. In most species of ground-dwelling squirrels,
natal dispersal is male biased and males typically disperse in
the season before attaining reproductive maturity (Holekamp,
1984). Female dispersal is more variable, and, in squirrels,
females tend to be philopatric or to disperse shorter distances
than males (Armitage, 1981; Holekamp, 1984; Michener,
1983). Thus, conspecific density may serve as an important
cue to the likelihood of successful settlement and eventual
reproduction. However, the timing of dispersal should de-
pend on an individual's expected life span; individuals of spe-
cies with longer life spans and older ages at reproductive ma-
turity are better able to delay dispersal. The probability of
finding and being capable of occupying a vacant habitat
should, on average, increase as an animal becomes older. But
for any particular individual, that probability will be affected
by the demographic events occurring in its social group in the
years before its birth, which will affect the likelihood of be-
coming resident, and by demographic events in other social
groups, which will effect the likelihood of immigration. Fur-
thermore, each individual's residual reproductive value, which
initially increases, will begin to decline at some point. When
residual reproductive value declines, individuals should at-
tempt to maximize their remaining reproductive value.
Whether individuals remain in their natal group will depend
on the level of inbreeding tolerance, the presence of domi-
nant conspecifics, and the distance to neighboring groups. If
groups are widely dispersed such that the probability of find-

ing a group with a vacancy is low, the potential fitness cost of
inbreeding and/or further loss of residual reproductive value
may be less than die costs of dispersing. Where groups are
contiguous or closely spaced individuals may easily and inex-
pensively determine vacancies in neighboring groups. Individ-
uals should disperse if die expected fitness of moving is great-
er than die expected fitness from remaining at home for 1 or
more additional years before breeding. Finally, when residual
reproductive value is declining, animals that disperse should
make a greater effort to invade and displace a resident; con-
versely, an animal that remains in its natal social group should
attempt to become reproductive.

We do not envision social complexity as a direct target of
selection. Social complexity, per se, does not evolve; we envi-
sion no "complexity genes." Rather, social complexity emerg-
es following the evolution of social roles and social behaviors
(sensu Hinde. 1975). Social complexity is a descriptive con-
cept that allows us to study broad relationships and compare
species-specific adaptations with a common currency. Detailed
study of each species is required to document mechanisms of
increased offspring survival and mechanisms of reproductive
suppression. Here and elsewhere (Blumstein and Armitage,
1997) we compared the social complexity among species. Our
method of quantifying social complexity also can be used to
quantify intraspecific variation in social complexity, and thus
may be useful in intraspecific soaoecological studies (Lott,
1991).
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Social complexity and
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S. frankHnii
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S. btidingi

life history va

Social
complexity

1.06
1.35
1.46
1.10
0.27
1.22
1.41
1.12
1.05
1.23
1.03
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0.48
0.41
030
0.38
0.27
0.26
0.43
0.44
0.40
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female mass
(g)
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3300
1400
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3314
1400
2811

525
756
703
600
575
100
333
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211
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% Females i
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48 !
45
45
nd
95
14
48
75
nd
80
66
88
90
63
95
nd

100
90
74 1
90
95
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i m female
-eproduction
[years)

2
}
J
}
1
J
)

Gestation
time
(days)

29
30
nd
nd
34
30
37
34
nd
nd
29
30
28
28
28
31
28
28
30
24
27

Lactation
time
(days)

24
28
nd
nd
46
nd
45
41
40
nd
39
35
28
28
32
35
43
38
49
21
25

Average
litter size

4.3
3.0
4.0
4.3
4.0
4.2
2.4
3.1
4.4
3.9
4.6
5.6
6 3
7 3
73
5.0
4.1
7 3
4 5
5.4
4.2

References'
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87-90
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APPENDIX

Species

£. ridutrdsonii
S. tUgans
S. cotumbiamu
S. townstndii

Social
complexity

0.39
0.43
0.65
0.41

Minimum
female mass
(g)

269
189
376

93

% Females
breeding

95
nd
75
86

Time to
first female
reproduction
(years)

1
1
2
1

Gestation
time
(days)

22
22
24
24

Lactation
time
(days)

29
32
28
38

Average
litter size

6.8
5.9
3.7
8.6
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