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                    Abstract

The possibility that variation in the propensity to forage innovatively is attributable to variation in cognition is a matter of debate. Motor flexibility and persistence offer alternative viewpoints. The present study used a computational model to evaluate the relative contribution of these mechanisms to the innovation process. We modeled the effects of low and high motor flexibility on problem-solving performance, which provided a baseline against which to examine how performance changed when combined with operant learning or persistence. We titrated our models through a wide range of parameter values in order to explore where in the outcome space biologically meaningful effect sizes are likely to be detected. The baseline model accurately reproduced an enhancement of performance when relative frequencies of motor expression were balanced (high motor flexibility) rather than skewed (low motor flexibility). Operant learning enhanced performance, but only when agents persisted until they solved and only when motor flexibility was low. In scenarios where agents gave up even if they had not solved, persistence in response to occurrence of secondary cues improved problem solving in both motor flexible and motor inflexible individuals. In scenarios, where the benefits of persistence and learning were compared directly, the benefits of persisting were typically equal, if not greater than those of learning. Given the high metabolic cost of neural tissue, our simulations predict that selection for enhanced problem solving should select for processes that increase persistence (e.g., personality changes) rather than learning.
                    

                    INTRODUCTION

Behavioral innovations provide an important means by which birds adjust to novel environmental challenges. The tendency to forage innovatively varies substantially across and within species, however. A collection of findings has prompted the view that this variation is related to variation in cognition (reviewed by Lefebvre 2011). First, large-scale comparative analyses have firmly established that the number of anecdotal reports of novel feedings behaviors increases with the volume of multimodal integration areas (Lefebvre et al. 1997; Lefebvre et al. 1998; Timmermans et al. 2000) broadly accepted to underpin higher order cognition (Cnotka et al. 2008; Mehlhorn et al. 2010; Güntürkün 2012). Second, experimental comparative research has shown that avian species that belong to taxa with higher innovation counts outperform species belonging to taxa with fewer innovations on a standard learning task (Timmermans et al. 2000). Third, within several (but not all, see Isden et al. 2013) avian species, individuals that solve innovative problem-solving tasks more quickly are faster to learn associatively (for a review, see Griffin and Guez 2014, but see Griffin and Guez 2016). In the light of these results and others, it has been suggested that foraging innovations provide a field-based operational measure of general-purpose cognition (for a review, see Lefebvre 2011).
On the other hand, studies eliciting innovative foraging experimentally have consistently revealed the central role of motor processes in discovering a solution to an extractive foraging task for the first time (Benson-Amram and Holekamp 2012; Thornton and Samson 2012; Benson-Amram et al. 2013; Mangalam and Singh 2013; Griffin et al. 2014; Diquelou et al. 2015; Griffin and Diquelou 2015). For example, in both spotted hyenas (Crocuta crocuta) and common (Indian) mynas (Acridotheres tristis), individuals that express a greater range of motor actions are more likely to solve an innovative problem-solving task than individuals with a more restricted motor range (Benson-Amram and Holekamp 2012; Griffin et al. 2014). Equally, common mynas are more likely and faster to solve an innovative problem-solving task than the native Australian noisy miner (Manorina melanocephala), and this difference is attributable to the greater motor diversity of mynas (Griffin and Diquelou 2015). Just recently, a field-based species comparison in birds revealed that a more even frequency of expression of motor actions appears to be more important to innovative foraging than the total number of motor actions (Diquelou et al. 2015). Of 7 urbanized avian species tested on an extractive foraging task under free-ranging conditions, Australian ravens (Corvus coronoides) had by far the highest probability and the shortest latency to solve the task (Diquelou et al. 2015). Whereas less innovative species expressed motor behavior heavily biased toward just 1–2 ineffective actions, ravens expressed a much more even frequency of both effective and ineffective techniques (Diquelou et al. 2015). Furthermore, in all species that solved at least once, trials on which motor diversity was greater had a higher probability of yielding a successful solution (Diquelou et al. 2015). The consistent finding that variation in motor diversity explains within species (reviewed by Griffin and Guez 2014), and at times among species (Griffin and Diquelou 2015, but see Sol 2015; Benson-Amram et al. 2016) variation in solving of novel foraging problems raises the possibility that foraging innovations might arise as a consequence of random variability in motor behavior. This conclusion places the emergence of novel foraging behaviors within the realm of variation in motor behavior rather than within that of variation in cognitive capacities (Keagy et al. 2011; Cole et al. 2012).
Another possibility is that motor processes operate in conjunction with operant learning, a cognitive process, in which behavioral frequencies are governed by their consequences (Shettleworth 2010). Perceptual-motor feedback loops involve the use of cues indirectly associated with reward as signals for successful solutions to novel problems. For example, in a string-pulling task, movement of a food reward that brings it closer to the body represents an intermediate solution to the problem at hand. That individuals can use such cues is suggested by the finding that New Caledonian crows (Corvus moneduloides) with restricted visual access to a moving reward perform less efficiently on a string-pulling task than individuals with access to feedback cues (Taylor et al. 2009). Similarly, carib grackles (Quiscalus lugubris) solve an extractive problem-solving task faster when movement cues are available than when these cues are blocked (Overington et al. 2011). Through the process of operant learning, such cues might trigger repetition of the successful motor action (i.e., the one that produced the feedback cue). Alternatively, the occurrence of a secondary cue might raise the probability of an individual making another attempt independent of the particular motor action used. That online adjustments to persistence might enhance performance is supported by consistent evidence that task-directed motivation improves problem solving in a taxonomically broad range of animals (reviewed by Griffin and Guez 2014). These considerations would explain the tendency to forage innovatively as a combination of motor flexibility and persistence rather than motor flexibility and operant learning.
Here, we modeled problem solving computationally in order to disentangle the relative role of these possible underpinning mechanisms. We were particularly interested in determining to what extent operant learning and persistence increased the likelihood of finding a solution to an innovative foraging problem for the first time, and how these processes interacted with motor flexibility. Our intention was to model solving of the type of problem-solving task used widely to assess innovativeness in foraging and breeding contexts in a broad range of taxonomic groups. Examples of such tasks include containers with lids that need to be lifted, tubes with flaps that need to be pulled, nest boxes with doors that need to be slid open, and obstacles that need to be removed in order to obtain desirable objects (e.g., food, chicks, nest decorations) (Keagy et al. 2009; Morand-Ferron et al. 2011; Benson-Amram and Holekamp 2012; Cole et al. 2012; Leal and Powell 2012; Thornton and Samson 2012; Cauchard et al. 2013; Griffin et al. 2014; Griffin and Diquelou 2015; Benson-Amram et al. 2016). It was not our intention to model solving of multi-step problems or solving of tasks involving tool use (Weir et al. 2002; Taylor et al. 2010; Auersperg et al. 2013). Our second intention was to model the mechanisms that generate a solution to a problem for the first time. The ecological and evolutionary significance of innovations no doubt depends on initial discoveries of novel opportunities advancing through a series of phases recently described by Tebbich et al. (2016), which progress from first discovery to repetition to reproduction. In our opinion, behavioral processes specific to innovative behavior (e.g., motor flexibility) are most likely to come into play during the first solving. This is because those mechanisms that lead to repetition of newly discovered opportunities are much more likely to draw upon well-studied learning phenomena (including operant learning) (Tebbich et al. 2016) and are perhaps better studied using classic learning paradigms (such as key pecking and lever pressing). It is for this reason that we focused our modeling of problem solving on first solving events.
We modeled solving probabilities of individuals trying to solve a hypothetical extractive task using a variety of motor actions with distinct probabilities of expression. Motor flexibility was modeled by varying the relative probability of expression of the motor actions available to a solver. To distinguish between effects of secondary cues mediated by operant learning and those mediated by changes in persistence, we either increased the probability of expression of the specific motor action that had produced the secondary cue each time a secondary cue occurred (operant learning) or increased the number of attempts an individual made independent of the specific motor action (persistence). Whereas the former would require a successful motor action to be learned for it to be repeated, the latter would require no involvement of learning.
                    METHODS

                    The basic model

We modeled the likelihood of solving an extractive problem-solving task for the first time across a range of scenarios (Figure 1). Our model simulated an agent repeatedly attempting to solve the task using a range of 4 possible motor actions within its motor repertoire. One attempt was viewed conceptually as 1 appendage-to-task (e.g., beak-to-task) contact in line with empirical research on innovative problem solving (for a review, see Griffin and Guez 2014). Across all scenarios, the solving probability of each of the 4 motor actions remained identical. What varied across scenarios were the relative frequencies of expression and the likelihood of each motor action eliciting a secondary cue. In doing so, we were able to determine how the likelihood of discovering the solution for the first time varied as a function of motor flexibility (baseline models), motor flexibility combined with persistence, and motor flexibility combined with persistence versus learning. An overview of our simulations is presented in Figure 1.
                    
Figure 1
Open in new tabDownload slide

Overview of simulations and model comparisons. To examine the effects of increasing the amplitude of the persistence gain, the model was titrated through increasing attempts by 1, 2, 3, and 4 each time a secondary cue occurred. Similarly, to examine the effects of increasing the amplitude of the learning gain (learning speeds), the model was titrated through increasing the probability of the successful motor action being performed on the subsequent attempt each time a secondary cue occurred from 0.05 to 1.0. These titrations were replicated on all ends of the branches but are not depicted in large format each time to avoid compromising readability.


                    Models with uncapped attempts (attempts continue until solving occurs)

We modeled a scenario in which an agent continued to attempt to solve the problem at hand and only stopped when solving occurred. In other words, the number of attempts made was not capped (Figure 1, right-hand side of the tree). This enabled us to compare the effect of adding the capacity to learn (learning B, Figure 1) to a baseline mode in which no learning occurred (baseline model A, Figure 1).
                    Motor flexibility (baseline model A)

We simulated the effects of motor flexibility on the likelihood of solving by varying the relative probabilities of expression of the 4 motor actions (Table 1; Figure 1). In the first case, relative probabilities of expression were highly skewed (low motor flexibility) toward 1 motor action that could not be used to solve (Table 1). We elected to skew motor expression toward the expression of an ineffective technique (i.e., a technique for which solving probability was set to zero, Table 1) based on our empirical observations in birds, which have consistently shown that a large proportion of an individual’s attempts are ineffective (Diquelou et al. 2015; Griffin and Diquelou 2015). In the second case, the relative probabilities of expression of the 4 possible motor actions were evenly distributed (“balanced”) (high motor flexibility) (Table 1). In both cases (low and high flexibility), probabilities of expression remained fixed at their initial levels throughout each model run. These conditions were hence referred to as “baseline” conditions because secondary cues (see below) were excluded (i.e., the probability of any motor action eliciting a secondary cue was zero, Table 1; baseline model A, Figure 1).
                    
Table 1Parameters used to model the effects of motor flexibility, operant learning, and persistence on the likelihood of solving an extractive foraging task for the first time
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            . 	Probabilities associated with motor actions
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            . 	Balanced
            . 	Probability of solving
            . 	Probability of secondary cue
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	Baseline	Motor 1	0.7	0.25	0	0
	Motor 2	0.2	0.05
	Motor 3	0.05	0.1
	Motor 4
	With secondary cue		Low probability of secondary cues
	Motor 1	0.7	0.25	0	0
	Motor 2	0.2	0.05	0.05
	Motor 3	0.05	0.1
	Motor 4
		High probability of secondary cues
	Motor 1	0.7	0.25	0	0
	Motor 2	0.2	0.05	0.2
	Motor 3	0.05	0.1	0.3
	Motor 4	0.4
		Systematic (Always) production of secondary cue
	Motor 1	0.7	0.25	0	0
	Motor 2	0.2	0.05	0.95
	Motor 3	0.05	0.1	0.9
	Motor 4
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	Motor 1	0.7	0.25	0	0
	Motor 2	0.2	0.05	0.95
	Motor 3	0.05	0.1	0.9
	Motor 4


For baseline conditions, the probabilities of expression of 4 possible motor actions were fixed throughout the simulations at the initial values indicated in the table. These probabilities were either balanced, simulating motor flexibility, or skewed, simulating motor inflexibility (Diquelou et al. 2015; Griffin and Diquelou 2015). In learning and persistence conditions, each motor action elicited a secondary cue with a probability that varied from low, high, to always (i.e., the motor action produced a secondary cue on every nonsuccessful attempt). See text for more details.
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For each of these 3 scenarios, the simulation was run 1000 times. Each run ended when solving occurred and variation in the total number of attempts provided a measure of problem-solving performance.
                    Motor flexibility and operant learning (learning B)

We superimposed the effects of operant learning on each of the 2 baseline scenarios described above (high/low flexibility) (Figure 1). Individuals were allocated 4 possible motor actions with either skewed or balanced probabilities of expression, as in baseline conditions, but this time, 3 motor actions (of the 4 possible) were allocated a probability of producing a secondary cue (e.g., movement) to which individuals payed attention (Table 1; Figure 1, far right-hand side). This secondary cue probability can be conceptualized as the frequency of learning opportunities during solving (i.e., each time a secondary cue is produced, a learning opportunity arises). We modeled the effects of an increasing frequency of learning opportunities by varying the probability of a secondary cue from low (0.05 for all 3 effective motor actions), to high (0.2–0.4 depending on the effective motor action used), to always (i.e., effective motor actions always produced a secondary cue each time they were used unless they resulted in solving, Table 1) (Figure 1, right-hand side).
To model the effects of learning, we implemented the basic principle of operant learning, whereby the frequency of behavior is governed by the consequences of that behavior: the probability of a given motor action being used on a subsequent attempt was increased if it had produced movement on the previous attempt, while the probability of expression of each of the other motor actions was decreased by an amount equal to the increase divided by 3. We refer to the change in probability as a “learning gain,” the amplitude of which can be used to model the effects of acquisition speed: agents that learn slowly are allocated a small learning gain each time a secondary cue occurs, whereas fast-learning agents are allocated a high learning gain. To examine the effects of acquisition speed on solving performance, we titrated our model through a range of learning gain parameter values by gradually increasing the learning gain from 0.05 (i.e., a secondary cue elicited only a small change in the probability of that motor action) to 1 (the secondary cue always elicited a systematic repeat of that motor action) (Figure 1, right-hand side).
For each of the resulting scenarios (combinations of 2 baseline models including secondary cues, varying frequencies of learning opportunities and varying amplitudes of the learning gain) (Figure 1, far right-hand side), the simulation was run 1000 times. Each run ended when solving occurred and variation in the total number of attempts across the 1000 runs provided a measure of problem-solving performance for a given scenario. Performances could then be compared across conditions (e.g., baseline A versus learning B, Figure 1, right-hand side).
                    Models with capped attempts (attempts end even if solving has not occurred)

In both uncapped versions of our model (see above), each simulation continued until solving occurred (Figure 1, right-hand side). One can argue that it is biologically unrealistic to assume that an animal will persist until solving occurs, as this would mean that the animal never gives up. Hence, we undertook to model a further set of scenarios in which the agent was allocated a capped number of solving attempts at the start of the simulation run (Figure 1, left side of the tree). This enabled us to quantify the effects of adding ongoing adjustments to persistence during solving to a baseline model in which no such adjustments were made (baseline model C versus persistence E, Figure 1). We were also able to compare the effects of ongoing adjustments to persistence (persistence model D, Figure 1) with ongoing adjustments to motor probabilities (learning model E, Figure 1). To determine whether persistence and learning acted differently on motor flexible versus motor skewed individuals, the above simulations were undertaken for each level of motor flexibility separately (skewed and balanced motor expression).
                    Motor flexibility (baseline model C)

In our baseline model for this set of simulations, the maximum number of attempts was fixed to 6 at the start of the run and remained fixed throughout the simulation (solving) because the probability of secondary cues was set to zero (Table 1; Figure 1, left-hand side). We run this baseline scenario using 2 levels of motor flexibility. In the first case, relative probabilities of expression were highly skewed (low motor flexibility) toward 1 motor action that could not be used to solve (Table 1). In the second case, the relative probabilities of expression were balanced (high motor flexibility; Table 1).
                    Motor flexibility coupled with ongoing adjustments to persistence (persistence D)

We superimposed the effects of adjusting persistence during solving on each of the 2 baseline scenarios described above (low motor flexibility, balanced motor expression) (Figure 1). A total of 3 of the 4 possible motor actions were allocated a probability of producing a secondary cue, in response to which the agent increased its maximum number of attempts (Figure 1, left-hand side). The increase in number of attempts was referred to as the “persistence gain” or “step.” We titrated the model through a range of persistence gain parameter values by varying the stepwise increase in maximum number of attempts by 1, 2, 3, or 4 attempts across different simulation runs (Figure 1). To model the effects of increasing opportunities to increase persistence, we varied the probability of secondary cues from low, to high, to always (Table 1; Figure 1). As before, for each scenario, the simulation was run 1000 times. The proportion of runs on which solving occurred within the maximum number of attempts was used as a dependent variable that could be compared across conditions (e.g., persistence D versus baseline model C, Figure 1).
                    Motor flexibility coupled with operant learning (learning E)

This model was identical to the previous model in all regards, except that secondary cues acted to change motor action probabilities instead of increasing the maximum number of attempts (Figure 1). Each time a secondary cue occurred, we increased the probability of that motor action being used on a subsequent attempt and decreased the probability of expression of each of the other possible motor actions by an amount equal to the increase divided by 3. As in our uncapped learning model (learning B, Figure 1), we titrated the model through a range of learning gain values by gradually increasing the stepwise increase in motor action probability from 0.05 (i.e., a secondary cue elicited only a small change in the probability of that motor action) to 1 (the secondary cue always triggered repetition of that motor action) (Figure 1). To model the effects of increasing opportunities to learn, we varied the probability of secondary cues from low, to high, to always (Table 1; Figure 1). As before, for each scenario, the simulation was run 1000 times. The proportion of runs on which solving occurred within the maximum number of attempts was used as a dependent variable that could be compared across conditions (e.g., learning E versus persistence D, Figure 1).
                    Statistical analyses

To quantify the effects of motor flexibility, we used t-tests without assumption of equal variance to compare the number of attempts until solving in simulations with balanced motor probabilities and simulations with skewed motor probabilities (no secondary cues; baseline model A, Figure 1). To quantify the effects of operant learning, we used t-tests to compare the number of attempts until solving in cases where motor probabilities were adjusted in response to secondary cues with cases in which no such adjustments were made (i.e., learning model B vs. baseline model A, Figure 1). To determine whether operant learning had different effects on a motor flexible individual and a motor skewed individual, we undertook comparisons of baseline versus operant learning models for motor balanced and motor skewed motor expression probabilities separately. Fisher exact tests were used to compare probabilities of solving in baseline scenarios in which no secondary cues occurred (baseline model C, Figure 1) and simulations with ongoing adjustments to the maximum number of attempts (persistence D, Figure 1). Fisher exact tests were also employed to compare the effects of persistence with those of learning. Here, we compared probabilities of solving in simulations in which secondary cues increased the maximum number of attempts (persistence D, Figure 1) with those in simulations in which secondary cues changed motor action probabilities (learning E, Figure 1). Once again, these comparisons were undertaken for each level of motor flexibility (skewed, balanced) separately. To evaluate the likely biological significance of statistical effects, we calculated the common language effect size. Effect sizes above 0.7 were considered to be biologically meaningful considering the very large sample sizes simulated by our models (N = 1000).
Simulations were run using Scilab 5.5.2 (www.scilab.org). All statistical analyses were conducted using R (3.2.3) and the compute.es package was employed to calculate the common language effect size. Probability thresholds for significance were set at P <0.05.
                    RESULTS

                    Models with uncapped attempts

First, we modeled the effects of motor flexibility and learning on innovative problem-solving performance using a scenario in which agents continued to attempt to solve until solving occurred. The number of attempts to solve decreased significantly when motor actions were expressed with balanced probabilities relative to when expression was heavily skewed toward an ineffective technique (Figure 2).
                    
Figure 2
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Effect of motor flexibility on problem-solving performance. Using a baseline model in which the probability of secondary cues was set to zero (baseline A, Figure 1), motor expression could be balanced (high motor flexibility) or skewed (low motor flexibility) (Table 1). A t-test was used to compare conditions (***P < 0.0001). Error bars represent minimums and maximums.


We found only limited evidence that learning enhanced problem-solving performance. For motor flexible agents (balanced motor probabilities) faced with few learning opportunities (probability secondary cue set to low), responding to secondary cues by repeating the same motor action (i.e., learning) did not decrease the number of attempts till solving significantly relative to when no learning occurred (Table 2). Varying the learning speed (learning gain) made little difference to this finding (Table 2). As learning opportunities became more common (probability secondary cues set to high or always), learning began to improve performance. The ability to learn decreased the number of attempts till solving significantly, and this across all learning speeds (i.e., learning gains, Table 2). Given the very large sample sizes envisaged by our simulations (N = 1000 for each scenario), it is important to consider the effect sizes of these performance improvements, however. For no comparison did the effect size of the statistical comparison between baseline and learning surpass 55% (Table 2). Consequently, the improvements in performance due to learning, albeit statistically significant, are unlikely to be biologically meaningful.
                    
Table 2Comparison of problem-solving performance (number of attempts till solving occurred) in scenarios where agents learn and baseline scenarios in which no learning occurs for motor balanced agents (uncapped learning attempts, Figure 1, right-hand side)

 
	Balanced
            . 
	Mean baseline (without learning)
            . 	Condition
            . 	Learning gain
            . 	Mean with learning
            . 	t
            . 	Degree of freedom
            . 	P value
            . 	Effect size
            . 
	16.576	Low	1	14.686	2.770	1947.444	0.006	53.49
	15.754	0.95	15.704	0.074	1987.275	0.941	50.09
	16.064	0.9	15.378	1.027	1996.307	0.305	51.3
	15.651	0.85	14.204	2.310	1958.901	0.021	52.91
	16.364	0.8	15.404	1.366	1973.944	0.172	51.72
	15.226	0.7	14.9	0.495	1997.102	0.621	50.62
	16.109	0.65	15.173	1.372	1994.973	0.170	51.73
	16.384	0.6	14.392	3.003	1984.955	0.003	53.78
	16.203	0.55	15.458	1.093	1996.508	0.275	51.38
	15.417	0.5	14.558	1.360	1930.412	0.174	51.72
	15.971	0.45	15.35	0.907	1987.959	0.365	51.14
	15.801	0.4	15.544	0.386	1988.490	0.700	50.49
	16.105	0.35	15.355	1.125	1997.301	0.261	51.42
	15.944	0.3	15.101	1.249	1982.977	0.212	51.58
	16.483	0.25	15.605	1.266	1964.412	0.206	51.6
	15.825	0.2	14.86	1.503	1971.215	0.133	51.9
	16.26	0.15	14.927	2.013	1992.847	0.044	52.54
	15.601	0.1	15.724	−0.188	1969.936	0.851	49.76
	16.917	0.05	15.468	2.072	1962.504	0.038	52.61
	14.996	0	16.159	−1.746	1997.263	0.081	47.8
	15.061	High	1	11.917	5.154	1850.382	0.000	56.47
	14.958	0.95	12.098	4.861	1948.004	0.000	56.11
	15.613	0.9	12.043	5.864	1901.818	0.000	57.36
	14.571	0.85	12.669	3.151	1990.463	0.002	53.97
	15.218	0.8	12.4	4.649	1936.526	0.000	55.84
	15.034	0.7	12.427	4.383	1920.220	0.000	55.51
	15.02	0.65	12.74	3.656	1924.432	0.000	54.6
	15.251	0.6	12.257	5.017	1954.104	0.000	56.3
	15.312	0.55	12.358	4.977	1904.629	0.000	56.25
	15.205	0.5	12.253	4.743	1813.732	0.000	55.96
	15.102	0.45	12.641	4.195	1956.823	0.000	55.28
	14.526	0.4	12.137	4.349	1900.811	0.000	55.47
	15.032	0.35	12.487	4.144	1970.591	0.000	55.21
	15.246	0.3	12.851	4.071	1877.545	0.000	55.12
	14.529	0.25	12.759	3.042	1905.246	0.002	53.83
	15.285	0.2	12.617	4.436	1887.826	0.000	55.58
	15.23	0.15	12.591	4.697	1848.969	0.000	55.9
	14.505	0.1	13.493	1.761	1874.244	0.078	52.22
	15.646	0.05	14.122	2.445	1962.082	0.015	53.08
	14.973	0	14.243	1.146	1964.611	0.252	51.44
	15.723	Always	1	13.942	2.779	1995.810	0.006	53.5
	16.403	0.95	13.542	4.253	1987.869	0.000	55.35
	15.694	0.9	14.38	1.933	1983.170	0.053	52.44
	16.017	0.85	13.475	3.910	1971.030	0.000	54.92
	16.503	0.8	13.185	5.082	1941.100	0.000	56.38
	16.436	0.7	14.333	3.002	1992.583	0.003	53.78
	16.16	0.65	14.472	2.450	1995.120	0.014	53.09
	15.705	0.6	13.953	2.717	1982.175	0.007	53.42
	16.323	0.55	13.731	3.825	1990.017	0.000	54.81
	16.824	0.5	13.9	4.252	1954.140	0.000	55.35
	15.576	0.45	14.643	1.321	1981.046	0.187	51.67
	15.809	0.4	14.16	2.507	1997.974	0.012	53.16
	16.792	0.35	13	5.482	1874.379	0.000	56.88
	16.406	0.3	14.04	3.613	1991.598	0.000	54.55
	15.956	0.25	13.547	3.580	1989.451	0.000	54.51
	17.199	0.2	13.946	4.677	1905.518	0.000	55.88
	15.804	0.15	13.759	3.175	1953.481	0.002	54
	16.063	0.1	13.18	4.470	1959.845	0.000	55.62
	16.298	0.05	14.388	2.942	1959.091	0.003	53.71
	16.368	0	16.289	0.113	1995.494	0.910	50.14
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	16.16	0.65	14.472	2.450	1995.120	0.014	53.09
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	16.298	0.05	14.388	2.942	1959.091	0.003	53.71
	16.368	0	16.289	0.113	1995.494	0.910	50.14


The probability of a secondary cue (Condition) varied from low, high, to always (Table 1) and the model was titrated through a series of increasing learning gains from 0.05 to 1.0. Only effect sizes of 0.7 and above were considered biologically meaningful given the very large simulated sample size (N = 1000). See text for more details.
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Table 2Comparison of problem-solving performance (number of attempts till solving occurred) in scenarios where agents learn and baseline scenarios in which no learning occurs for motor balanced agents (uncapped learning attempts, Figure 1, right-hand side)
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	16.792	0.35	13	5.482	1874.379	0.000	56.88
	16.406	0.3	14.04	3.613	1991.598	0.000	54.55
	15.956	0.25	13.547	3.580	1989.451	0.000	54.51
	17.199	0.2	13.946	4.677	1905.518	0.000	55.88
	15.804	0.15	13.759	3.175	1953.481	0.002	54
	16.063	0.1	13.18	4.470	1959.845	0.000	55.62
	16.298	0.05	14.388	2.942	1959.091	0.003	53.71
	16.368	0	16.289	0.113	1995.494	0.910	50.14


The probability of a secondary cue (Condition) varied from low, high, to always (Table 1) and the model was titrated through a series of increasing learning gains from 0.05 to 1.0. Only effect sizes of 0.7 and above were considered biologically meaningful given the very large simulated sample size (N = 1000). See text for more details.
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For motor inflexible individuals (skewed motor probabilities), there was slightly more evidence that learning improved performance (Table 3). The number of attempts till solving decreased across all frequencies of learning opportunities (low, high, and always), indicating a consistent benefit of being able to adjust the frequency of motor actions in response to secondary cues (Table 3). Once again, however, close consideration of effect sizes for these comparisons indicated that the learning-induced improvement in performance was likely to be biologically meaningful only when learning opportunities were systematic (i.e., they occurred on every nonsuccessful attempt, Table 3, condition always) and learning was relatively fast (learning gain >0.35, Table 3).
                    
Table 3Comparison of problem-solving performance (number of attempts till solving occurred) in scenarios where agents learn and baseline scenarios in which no learning occurs for motor skewed agents (uncapped learning attempts, Figure 1, right-hand side)

 
	Unbalanced
            . 
	Mean baseline (without learning)
            . 	Condition
            . 	Learning gain
            . 	Mean with learning
            . 	t
            . 	Degree of freedom
            . 	P value
            . 	Effect size
            . 
	51.688	Low	1	35.451	8.500	1673.746	0.000	60.6
	51.276	0.95	36.407	8.123	1688.122	0.000	60.14
	49.904	0.9	36.016	7.926	1711.517	0.000	59.9
	48.709	0.85	37.829	5.868	1789.868	0.000	57.36
	50.598	0.8	34.473	8.328	1554.566	0.000	60.39
	51.596	0.7	36.11	8.272	1697.979	0.000	60.32
	50.981	0.65	39.248	6.141	1783.682	0.000	57.7
	47.163	0.6	37.749	5.101	1824.173	0.000	56.41
	50.398	0.55	36.955	7.163	1712.821	0.000	58.96
	49.598	0.5	38.991	5.743	1760.831	0.000	57.21
	52.368	0.45	39.027	6.797	1775.697	0.000	58.51
	49.163	0.4	40.416	4.638	1866.203	0.000	55.83
	50.789	0.35	39.464	5.943	1742.640	0.000	57.45
	49.915	0.3	41.765	4.133	1891.529	0.000	55.2
	50.33	0.25	43.312	3.564	1862.873	0.000	54.49
	54.275	0.2	43.163	5.191	1822.630	0.000	56.52
	49.873	0.15	45.772	2.006	1924.791	0.045	52.53
	50.582	0.1	47.411	1.534	1991.376	0.125	51.93
	48.482	0.05	51.434	−1.361	1997.887	0.174	48.28
	50.375	0	49.936	0.204	1997.958	0.838	50.26
	48.8	High	1	21.792	15.890	1264.492	0.000	69.23
	49.188	0.95	22.609	15.852	1285.852	0.000	69.19
	49.108	0.9	23.239	16.011	1324.069	0.000	69.37
	49.124	0.85	23.174	15.491	1273.756	0.000	68.79
	48.311	0.8	22.606	15.680	1288.007	0.000	69
	46.408	0.7	24.071	14.691	1361.729	0.000	67.89
	48.849	0.65	23.67	15.951	1338.907	0.000	69.3
	48.486	0.6	22.87	16.111	1321.083	0.000	69.48
	50.845	0.55	23.891	15.451	1307.320	0.000	68.74
	47.816	0.5	23.544	14.783	1255.738	0.000	67.99
	49.831	0.45	24.765	15.004	1319.261	0.000	68.24
	51.002	0.4	24.426	15.466	1274.549	0.000	68.76
	47.619	0.35	25.597	14.020	1400.775	0.000	67.12
	48.23	0.3	26.765	13.254	1372.113	0.000	66.24
	50.998	0.25	28.217	13.502	1354.830	0.000	66.53
	50.188	0.2	29.723	11.438	1432.544	0.000	64.12
	49.728	0.15	32.467	10.033	1546.801	0.000	62.45
	50.067	0.1	33.999	8.883	1568.218	0.000	61.06
	47.088	0.05	40.746	3.545	1864.067	0.000	54.46
	46.738	0	47.906	−0.566	1996.627	0.572	49.29
	48.405	Always	1	19.013	17.869	1234.333	0.000	71.4
	49.95	0.95	18.822	18.626	1240.523	0.000	72.21
	49.141	0.9	19.433	19.611	1317.779	0.000	73.24
	48.159	0.85	19.301	17.951	1266.354	0.000	71.49
	50.719	0.8	19.705	18.427	1278.543	0.000	72
	48.294	0.7	18.079	19.127	1273.576	0.000	72.74
	51.492	0.65	19.064	19.296	1224.586	0.000	72.91
	49.403	0.6	19.719	17.999	1287.924	0.000	71.54
	49.887	0.55	19.842	17.711	1222.818	0.000	71.23
	50.516	0.5	19.354	17.939	1212.859	0.000	71.47
	48.262	0.45	19.838	17.731	1245.297	0.000	71.25
	50.373	0.4	20.373	17.007	1231.121	0.000	70.46
	49.991	0.35	21.401	17.280	1250.494	0.000	70.76
	48.555	0.3	23.334	14.923	1310.774	0.000	68.15
	52.134	0.25	21.988	17.562	1230.658	0.000	71.07
	47.788	0.2	23.328	15.478	1308.967	0.000	68.77
	51.246	0.15	24.323	15.872	1268.409	0.000	69.21
	51.85	0.1	27.138	14.036	1291.390	0.000	67.14
	51.362	0.05	29.659	12.252	1343.466	0.000	65.08
	51.398	0	51.214	0.084	1997.864	0.933	50.11


	Unbalanced
            . 
	Mean baseline (without learning)
            . 	Condition
            . 	Learning gain
            . 	Mean with learning
            . 	t
            . 	Degree of freedom
            . 	P value
            . 	Effect size
            . 
	51.688	Low	1	35.451	8.500	1673.746	0.000	60.6
	51.276	0.95	36.407	8.123	1688.122	0.000	60.14
	49.904	0.9	36.016	7.926	1711.517	0.000	59.9
	48.709	0.85	37.829	5.868	1789.868	0.000	57.36
	50.598	0.8	34.473	8.328	1554.566	0.000	60.39
	51.596	0.7	36.11	8.272	1697.979	0.000	60.32
	50.981	0.65	39.248	6.141	1783.682	0.000	57.7
	47.163	0.6	37.749	5.101	1824.173	0.000	56.41
	50.398	0.55	36.955	7.163	1712.821	0.000	58.96
	49.598	0.5	38.991	5.743	1760.831	0.000	57.21
	52.368	0.45	39.027	6.797	1775.697	0.000	58.51
	49.163	0.4	40.416	4.638	1866.203	0.000	55.83
	50.789	0.35	39.464	5.943	1742.640	0.000	57.45
	49.915	0.3	41.765	4.133	1891.529	0.000	55.2
	50.33	0.25	43.312	3.564	1862.873	0.000	54.49
	54.275	0.2	43.163	5.191	1822.630	0.000	56.52
	49.873	0.15	45.772	2.006	1924.791	0.045	52.53
	50.582	0.1	47.411	1.534	1991.376	0.125	51.93
	48.482	0.05	51.434	−1.361	1997.887	0.174	48.28
	50.375	0	49.936	0.204	1997.958	0.838	50.26
	48.8	High	1	21.792	15.890	1264.492	0.000	69.23
	49.188	0.95	22.609	15.852	1285.852	0.000	69.19
	49.108	0.9	23.239	16.011	1324.069	0.000	69.37
	49.124	0.85	23.174	15.491	1273.756	0.000	68.79
	48.311	0.8	22.606	15.680	1288.007	0.000	69
	46.408	0.7	24.071	14.691	1361.729	0.000	67.89
	48.849	0.65	23.67	15.951	1338.907	0.000	69.3
	48.486	0.6	22.87	16.111	1321.083	0.000	69.48
	50.845	0.55	23.891	15.451	1307.320	0.000	68.74
	47.816	0.5	23.544	14.783	1255.738	0.000	67.99
	49.831	0.45	24.765	15.004	1319.261	0.000	68.24
	51.002	0.4	24.426	15.466	1274.549	0.000	68.76
	47.619	0.35	25.597	14.020	1400.775	0.000	67.12
	48.23	0.3	26.765	13.254	1372.113	0.000	66.24
	50.998	0.25	28.217	13.502	1354.830	0.000	66.53
	50.188	0.2	29.723	11.438	1432.544	0.000	64.12
	49.728	0.15	32.467	10.033	1546.801	0.000	62.45
	50.067	0.1	33.999	8.883	1568.218	0.000	61.06
	47.088	0.05	40.746	3.545	1864.067	0.000	54.46
	46.738	0	47.906	−0.566	1996.627	0.572	49.29
	48.405	Always	1	19.013	17.869	1234.333	0.000	71.4
	49.95	0.95	18.822	18.626	1240.523	0.000	72.21
	49.141	0.9	19.433	19.611	1317.779	0.000	73.24
	48.159	0.85	19.301	17.951	1266.354	0.000	71.49
	50.719	0.8	19.705	18.427	1278.543	0.000	72
	48.294	0.7	18.079	19.127	1273.576	0.000	72.74
	51.492	0.65	19.064	19.296	1224.586	0.000	72.91
	49.403	0.6	19.719	17.999	1287.924	0.000	71.54
	49.887	0.55	19.842	17.711	1222.818	0.000	71.23
	50.516	0.5	19.354	17.939	1212.859	0.000	71.47
	48.262	0.45	19.838	17.731	1245.297	0.000	71.25
	50.373	0.4	20.373	17.007	1231.121	0.000	70.46
	49.991	0.35	21.401	17.280	1250.494	0.000	70.76
	48.555	0.3	23.334	14.923	1310.774	0.000	68.15
	52.134	0.25	21.988	17.562	1230.658	0.000	71.07
	47.788	0.2	23.328	15.478	1308.967	0.000	68.77
	51.246	0.15	24.323	15.872	1268.409	0.000	69.21
	51.85	0.1	27.138	14.036	1291.390	0.000	67.14
	51.362	0.05	29.659	12.252	1343.466	0.000	65.08
	51.398	0	51.214	0.084	1997.864	0.933	50.11


See Table 2 for more details.
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Table 3Comparison of problem-solving performance (number of attempts till solving occurred) in scenarios where agents learn and baseline scenarios in which no learning occurs for motor skewed agents (uncapped learning attempts, Figure 1, right-hand side)

 
	Unbalanced
            . 
	Mean baseline (without learning)
            . 	Condition
            . 	Learning gain
            . 	Mean with learning
            . 	t
            . 	Degree of freedom
            . 	P value
            . 	Effect size
            . 
	51.688	Low	1	35.451	8.500	1673.746	0.000	60.6
	51.276	0.95	36.407	8.123	1688.122	0.000	60.14
	49.904	0.9	36.016	7.926	1711.517	0.000	59.9
	48.709	0.85	37.829	5.868	1789.868	0.000	57.36
	50.598	0.8	34.473	8.328	1554.566	0.000	60.39
	51.596	0.7	36.11	8.272	1697.979	0.000	60.32
	50.981	0.65	39.248	6.141	1783.682	0.000	57.7
	47.163	0.6	37.749	5.101	1824.173	0.000	56.41
	50.398	0.55	36.955	7.163	1712.821	0.000	58.96
	49.598	0.5	38.991	5.743	1760.831	0.000	57.21
	52.368	0.45	39.027	6.797	1775.697	0.000	58.51
	49.163	0.4	40.416	4.638	1866.203	0.000	55.83
	50.789	0.35	39.464	5.943	1742.640	0.000	57.45
	49.915	0.3	41.765	4.133	1891.529	0.000	55.2
	50.33	0.25	43.312	3.564	1862.873	0.000	54.49
	54.275	0.2	43.163	5.191	1822.630	0.000	56.52
	49.873	0.15	45.772	2.006	1924.791	0.045	52.53
	50.582	0.1	47.411	1.534	1991.376	0.125	51.93
	48.482	0.05	51.434	−1.361	1997.887	0.174	48.28
	50.375	0	49.936	0.204	1997.958	0.838	50.26
	48.8	High	1	21.792	15.890	1264.492	0.000	69.23
	49.188	0.95	22.609	15.852	1285.852	0.000	69.19
	49.108	0.9	23.239	16.011	1324.069	0.000	69.37
	49.124	0.85	23.174	15.491	1273.756	0.000	68.79
	48.311	0.8	22.606	15.680	1288.007	0.000	69
	46.408	0.7	24.071	14.691	1361.729	0.000	67.89
	48.849	0.65	23.67	15.951	1338.907	0.000	69.3
	48.486	0.6	22.87	16.111	1321.083	0.000	69.48
	50.845	0.55	23.891	15.451	1307.320	0.000	68.74
	47.816	0.5	23.544	14.783	1255.738	0.000	67.99
	49.831	0.45	24.765	15.004	1319.261	0.000	68.24
	51.002	0.4	24.426	15.466	1274.549	0.000	68.76
	47.619	0.35	25.597	14.020	1400.775	0.000	67.12
	48.23	0.3	26.765	13.254	1372.113	0.000	66.24
	50.998	0.25	28.217	13.502	1354.830	0.000	66.53
	50.188	0.2	29.723	11.438	1432.544	0.000	64.12
	49.728	0.15	32.467	10.033	1546.801	0.000	62.45
	50.067	0.1	33.999	8.883	1568.218	0.000	61.06
	47.088	0.05	40.746	3.545	1864.067	0.000	54.46
	46.738	0	47.906	−0.566	1996.627	0.572	49.29
	48.405	Always	1	19.013	17.869	1234.333	0.000	71.4
	49.95	0.95	18.822	18.626	1240.523	0.000	72.21
	49.141	0.9	19.433	19.611	1317.779	0.000	73.24
	48.159	0.85	19.301	17.951	1266.354	0.000	71.49
	50.719	0.8	19.705	18.427	1278.543	0.000	72
	48.294	0.7	18.079	19.127	1273.576	0.000	72.74
	51.492	0.65	19.064	19.296	1224.586	0.000	72.91
	49.403	0.6	19.719	17.999	1287.924	0.000	71.54
	49.887	0.55	19.842	17.711	1222.818	0.000	71.23
	50.516	0.5	19.354	17.939	1212.859	0.000	71.47
	48.262	0.45	19.838	17.731	1245.297	0.000	71.25
	50.373	0.4	20.373	17.007	1231.121	0.000	70.46
	49.991	0.35	21.401	17.280	1250.494	0.000	70.76
	48.555	0.3	23.334	14.923	1310.774	0.000	68.15
	52.134	0.25	21.988	17.562	1230.658	0.000	71.07
	47.788	0.2	23.328	15.478	1308.967	0.000	68.77
	51.246	0.15	24.323	15.872	1268.409	0.000	69.21
	51.85	0.1	27.138	14.036	1291.390	0.000	67.14
	51.362	0.05	29.659	12.252	1343.466	0.000	65.08
	51.398	0	51.214	0.084	1997.864	0.933	50.11


	Unbalanced
            . 
	Mean baseline (without learning)
            . 	Condition
            . 	Learning gain
            . 	Mean with learning
            . 	t
            . 	Degree of freedom
            . 	P value
            . 	Effect size
            . 
	51.688	Low	1	35.451	8.500	1673.746	0.000	60.6
	51.276	0.95	36.407	8.123	1688.122	0.000	60.14
	49.904	0.9	36.016	7.926	1711.517	0.000	59.9
	48.709	0.85	37.829	5.868	1789.868	0.000	57.36
	50.598	0.8	34.473	8.328	1554.566	0.000	60.39
	51.596	0.7	36.11	8.272	1697.979	0.000	60.32
	50.981	0.65	39.248	6.141	1783.682	0.000	57.7
	47.163	0.6	37.749	5.101	1824.173	0.000	56.41
	50.398	0.55	36.955	7.163	1712.821	0.000	58.96
	49.598	0.5	38.991	5.743	1760.831	0.000	57.21
	52.368	0.45	39.027	6.797	1775.697	0.000	58.51
	49.163	0.4	40.416	4.638	1866.203	0.000	55.83
	50.789	0.35	39.464	5.943	1742.640	0.000	57.45
	49.915	0.3	41.765	4.133	1891.529	0.000	55.2
	50.33	0.25	43.312	3.564	1862.873	0.000	54.49
	54.275	0.2	43.163	5.191	1822.630	0.000	56.52
	49.873	0.15	45.772	2.006	1924.791	0.045	52.53
	50.582	0.1	47.411	1.534	1991.376	0.125	51.93
	48.482	0.05	51.434	−1.361	1997.887	0.174	48.28
	50.375	0	49.936	0.204	1997.958	0.838	50.26
	48.8	High	1	21.792	15.890	1264.492	0.000	69.23
	49.188	0.95	22.609	15.852	1285.852	0.000	69.19
	49.108	0.9	23.239	16.011	1324.069	0.000	69.37
	49.124	0.85	23.174	15.491	1273.756	0.000	68.79
	48.311	0.8	22.606	15.680	1288.007	0.000	69
	46.408	0.7	24.071	14.691	1361.729	0.000	67.89
	48.849	0.65	23.67	15.951	1338.907	0.000	69.3
	48.486	0.6	22.87	16.111	1321.083	0.000	69.48
	50.845	0.55	23.891	15.451	1307.320	0.000	68.74
	47.816	0.5	23.544	14.783	1255.738	0.000	67.99
	49.831	0.45	24.765	15.004	1319.261	0.000	68.24
	51.002	0.4	24.426	15.466	1274.549	0.000	68.76
	47.619	0.35	25.597	14.020	1400.775	0.000	67.12
	48.23	0.3	26.765	13.254	1372.113	0.000	66.24
	50.998	0.25	28.217	13.502	1354.830	0.000	66.53
	50.188	0.2	29.723	11.438	1432.544	0.000	64.12
	49.728	0.15	32.467	10.033	1546.801	0.000	62.45
	50.067	0.1	33.999	8.883	1568.218	0.000	61.06
	47.088	0.05	40.746	3.545	1864.067	0.000	54.46
	46.738	0	47.906	−0.566	1996.627	0.572	49.29
	48.405	Always	1	19.013	17.869	1234.333	0.000	71.4
	49.95	0.95	18.822	18.626	1240.523	0.000	72.21
	49.141	0.9	19.433	19.611	1317.779	0.000	73.24
	48.159	0.85	19.301	17.951	1266.354	0.000	71.49
	50.719	0.8	19.705	18.427	1278.543	0.000	72
	48.294	0.7	18.079	19.127	1273.576	0.000	72.74
	51.492	0.65	19.064	19.296	1224.586	0.000	72.91
	49.403	0.6	19.719	17.999	1287.924	0.000	71.54
	49.887	0.55	19.842	17.711	1222.818	0.000	71.23
	50.516	0.5	19.354	17.939	1212.859	0.000	71.47
	48.262	0.45	19.838	17.731	1245.297	0.000	71.25
	50.373	0.4	20.373	17.007	1231.121	0.000	70.46
	49.991	0.35	21.401	17.280	1250.494	0.000	70.76
	48.555	0.3	23.334	14.923	1310.774	0.000	68.15
	52.134	0.25	21.988	17.562	1230.658	0.000	71.07
	47.788	0.2	23.328	15.478	1308.967	0.000	68.77
	51.246	0.15	24.323	15.872	1268.409	0.000	69.21
	51.85	0.1	27.138	14.036	1291.390	0.000	67.14
	51.362	0.05	29.659	12.252	1343.466	0.000	65.08
	51.398	0	51.214	0.084	1997.864	0.933	50.11


See Table 2 for more details.
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                    Models with capped attempts

In our second set of simulations, we modeled scenarios in which agents could interrupt attempting even if solving had not occurred. Mean comparisons are depicted in Figures 3–6 and the corresponding effects sizes are depicted in Supplementary Figures S1–Supplementary Data.
                    
Figure 3
Open in new tabDownload slide

Changes in problem-solving performance as a consequence of increasing persistence in response to secondary cues in motor balanced agents (capped attempts, Figure 1, left-hand side). Mean performance (probability of solving) without persistence (baseline model C, Figure1) was subtracted from mean performance with persistence (persistence D, Figure 1). Adjustments to persistence during problem solving were increased by either 1, 2, 3, or 4 attempt(s) each time a secondary cue occurred. Adjustment opportunities were either rare (Low, i.e., secondary cue probability was low, Table 1), common (High, i.e., secondary cue probability was 0.2–0.4, Table 1), or systematic (Always, i.e., effective motor actions elicited a secondary cue on every nonsuccessful attempt, Table 1).


                    
Figure 4
Open in new tabDownload slide

Changes in problem-solving performance as a consequence of increasing persistence in response to secondary cues in motor skewed agents (capped attempts, Figure 1, left-hand side). See Figure 3 for more details.


                    
Figure 5
Open in new tabDownload slide

Comparison of the effects of persistence and learning on problem-solving performance in motor flexible individuals (capped attempts, Figure 1, left-hand side). For each value of the titrated learning gain, mean performance (probability of solving) in a learning simulation (learning E, Figure 1) was subtracted from mean performance in a persistence simulation (persistence D, Figure 1). The difference is depicted for each secondary cue probability (a) Low, (b) High, and (c) Always (Table 1) and each persistence gain (Steps 1, 2, 3 , 4, Figure 1).


                    
Figure 6
Open in new tabDownload slide

Comparison of the effects of persistence and learning on problem-solving performance in motor skewed agents (capped attempts, Figure 1, left-hand side). The difference is depicted for each secondary cue probability (a) Low, (b) High, and (c) Always (Table 1). See Figure 5 for details.


First, we compared problem-solving performance in a scenario in which persistence increased in response to secondary cues with a baseline scenario with no ongoing adjustments to persistence (persistence D versus baseline model C, Figure 1). For motor flexible individuals and systematic secondary cues, adjusting persistence increased the probability of solving significantly across all levels of persistence gain (Figure 3, condition always). Effects sizes of these persistence versus baseline comparisons were well above levels considered as biologically meaningful (>0.7; Supplementary Figure S1, condition always). When secondary cues were less common, the persistence gain needed to be greater (2 and above) for persistence to provide a biologically meaningful benefit (Figure 3 and Supplementary Figure S1). For agents with low motor diversity (and skewed toward nonsolving), persisting also provided a biologically meaningful increase in performance, but only when secondary cues occurred systematically and persistence gains were high (Figure 4 and Supplementary Figure S2). Indeed, persisting only increased performance when secondary cues occurred on every nonsuccessful attempt and when persistence gains were equal to 3 and above (Figure 4).
Next, we compared problem-solving performance in a scenario in which secondary cues triggered increases in persistence with a scenario in which secondary cues triggered learning (persistence D versus learning E, Figure 1). In motor flexible agents (balanced motor probabilities), persisting in response to secondary cues was as effective as learning when secondary cues were rare (Figure 5a). As secondary cues became more frequent, the benefits of increasing persistence began to surpass the benefits of learning as long as the persistence gain was high (3 and above, Figure 5b). When secondary cues occurred systematically on every nonsuccessful attempt, the performance benefits of persistence consistently outweighed the benefits of learning (Figure 5c). Titrating the models through a continuum of learning gains did not change these outcomes. Consideration of effect sizes of these mean comparisons confirmed that the persistence-induced improvement in performance reached biologically meaningful levels (> 0.7) when the probability of secondary cues was high or systematic and increases in persistence were high (≥3; Supplementary Figure S3).
In agents with low motor flexibility (and skewed toward nonsolving), the performance benefits of persisting outweighed those of learning when secondary cues occurred systematically and when the persistence gain was high (3 and above; Figure 6). Considering the effect sizes of this persistence versus learning comparison confirmed that these were the only scenarios in which persistence-induced performance improvements over and above learning reached levels considered to be biologically meaningful (Supplementary Figure S4). Adjusting persistence was just as effective as learning in all other scenarios (Figure 6 and Supplementary Figure S4). In no scenario was learning more effective than persistence (Figures 5 and 6 and Supplementary Figures S3 and Supplementary Data).
In sum, in simulations where agents had the possibility of giving up before solving occurred, adjusting persistence was generally as effective as learning, and in several cases more so than learning (e.g., in motor balanced individuals and motor skewed individuals when the probability of secondary cues was high or systematic).
                    DISCUSSION

In the present study, we used a modeling approach to disentangle the relative roles of persistence and operant learning on the likelihood of discovering the solution to a problem-solving task and to determine how these processes interacted with motor flexibility. By titrating our simulations through a range of parameter values, we provide a guide for empirical work by identifying where in the solution space, persistence and learning benefits are likely to be detectable.
Motor flexibility has been found consistently to have a facilitating effect on innovation performance both within and at times across species (for a review, see Griffin and Guez 2014, but see Benson-Amram et al. 2016). Griffin and Diquelou (2015) and Diquelou et al. (2015) recently incorporated the idea that high motor flexibility also encompasses not only the number of different motor actions, but also a more even relative motor expression. Highly innovative Australian ravens (C. coronoides) differ strikingly from other less innovative avian species in their more balanced distribution of motor actions (effective and ineffective), which stands in stark contrast to the highly skewed deployment of ineffective techniques in less innovative avian species (Diquelou et al. 2015). In addition, greater motor evenness is a reliable predictor of higher solving probabilities and shorter solving latencies across all species (Diquelou et al. 2015). Equally, the outcomes of the present simulations showed that the number of trials till solving was systematically lower when probabilities of expression were balanced than when they are skewed. Assuming that solving probabilities of each motor action remain constant, more balanced motor expression frequencies raise the overall probability of solving relative to a pattern of motor actions skewed toward an ineffective technique. It is for this reason that our model accurately reproduced a process known empirically to facilitate innovation performance, providing a solid platform upon which to examine the interacting effects of persistence and learning.
To examine the effect of coupling motor flexibility with learning, we conducted a series of simulations in which agents attempted to solve and only stopped when solving occurred. This set of simulations revealed a beneficial effect of learning within a limited range of scenarios. Repeating a successful motor action (i.e., the one that had produced the secondary cue) improved problem-solving performance, but these improvements only reached levels that would be considered biologically meaningful in agents with skewed motor repertoires, when learning opportunities occurred systematically (i.e., on every nonsuccessful attempt) and when learning speeds were relatively high. To our knowledge, only 1 study in birds has examined in detail how behavior changes during problem solving (Overington et al. 2011). The study revealed that grackles solve a problem-solving task more quickly when they have access to movement cues than when these are blocked (Overington et al. 2011). Detailed analysis of solving behavior revealed that grackles that responded to movement cues by shifting their efforts more quickly to those areas that had produced movement solved the task more quickly. Without further knowledge of carib grackles’ natural foraging behaviors, it is not possible to say how closely the grackle conforms to our prediction that the species benefits from learning because it is relatively skewed in its motor expression. According to our simulations, the fact that an effect of learning was empirically detectable leads to the prediction that grackles were fast learners (large adjustments to motor probabilities in response to secondary cues) and movement cues were very common within the testing paradigm. Had these conditions not been met, an effect of learning would not have been empirically detectable according to our analysis of effects sizes.
In a second set of simulations, agents had the opportunity to give up before solving occurred. This seemingly more biologically realistic approach allowed us to model the effects of persisting on the one hand and persisting versus learning on the other. When agents had the possibility of giving up, increasing persistence in response to secondary cues during problem solving enhanced the probability of solving in both motor flexible and motor skewed individuals relative to when persistence remained fixed throughout solving as long as secondary cues were common. When opposing the beneficial effects of increasing persistence during solving against the beneficial effects of learning, increasing persistence was most often just as effective as learning. In fact, in several cases, increasing persistence was more effective than learning. Close consideration of effects sizes suggests that experimental work teasing persistence and learning apart (e.g., by analyzing in detail whether individuals repeat successful motor actions in response to a secondary cue or simply try again) would most likely detect beneficial effects of persisting in cases where secondary cues occur systematically, and this, in individuals with both flexible and skewed motor repertoires.
Our simulations conceive balanced motor repertoires as a means of increasing problem solving, but also suggest that operant learning can offer a possible compensatory mechanism for skewed motor repertoires as long as individuals never give up. In cases where agents do give up prior to solving, persistence achieves equal if not greater increases in performance without the need for learning across a broader range of scenarios. In no modeled scenario or parameter variation was learning more effective than persistence. Given that neural tissue that supports learning is metabolically expensive (Lennie 2003), the results of these simulations suggest that selection should favor the evolution of mechanisms that increase persistence rather than mechanisms that support learning as a means for enhancing the invention of novel extractive behaviors and the application of old ones to new contexts. Mechanisms that act to increase persistence might pertain to those that drive variation in personality. Indeed, the tendency to persist has been linked to proactive personalities that tend to be less flexible and less sensitive to environmental stimuli (Cockrem 2007). The simulations presented here suggest that high problem-solving performance might fit within a proactive behavioral profile.
To conclude, our results extend previous analyses of innovative behavior significantly by exploring the likely relative role of operant learning, persistence, and motor flexibility in the emergence of novel behaviors across a large range of parameter values. Although our simulations might present an oversimplified representation of problem-solving behavior in that they assume that animals come to a task with no prior relevant experience, this representation provides a robust platform from which to begin modeling the effects of different processes on innovative problem solving. We have begun with motor flexibility, persistence, and learning, but later additions could include other processes likely involved in innovativeness, such as neophobia and neophilia (Griffin 2016). One might also argue that this representation conforms to the definition of innovative behavior in so far that preexisting behaviors are applied to contexts not encountered previously (Reader and Laland 2003). Other authors have modeled innovativeness as the product of generalization (Kolodny et al. 2015) rather than motor flexibility, persistence, and learning, so the approach used here is novel in that regard. Overall, our results point to a more generalized role of persistence than learning, suggesting that it is rarely in the first occurrence of a behavior that one should seek an involvement of cognition. We suggest future work should seek to investigate the nature of the knowledge animals take away from the discovery of a novel opportunity. At 1 extreme, an animal might learn nothing, making each innovation experience a new one. At the other extreme, an animal might learn an abstract rule about how the physical world functions (“lifting movements produce food”). Somewhere in between, an animal might learn an association between the specific innovation context and a given motor action (“peck the blue dot to obtain food”). Our simulations suggest that it might be in the complexity of the knowledge gained from a given innovation experience that we should be seeking the link between innovation and cognition rather than in the innovation process itself (Tebbich et al. 2016). Therein might lie the explanation for why innovation propensity varies across individuals and species.
                    SUPPLEMENTARY MATERIAL

Supplementary material can be found at Supplementary Data
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